首页|基于改进YOLOv8的瓶胚缺陷检测模型

基于改进YOLOv8的瓶胚缺陷检测模型

Bottle Preforms Defect Detection Model Based on Improved YOLOv8

扫码查看
瓶胚缺陷检测是保障PET瓶成型质量的关键环节.为了将缺陷检测模型部署到工业应用场景中实现在线检测,并提高瓶胚缺陷检测精度,提出一种基于改进 YOLOv8 的瓶胚缺陷检测模型——YOLOv8-FEMA 模型.首先,将FasterNet Block引入YOLOv8 模型的C2f模块中,以减少模型的参数量;然后,引入EMA机制,使网络更聚焦于有用的特征信息,以提升模型的检测精度.实验结果表明,该模型相较于YOLOv8n模型,参数量、浮点运算量分别减少了27%和26%,检测精度提升了0.03.该模型部署在瓶胚缺陷检测软件中,可有效检测出瓶胚缺陷.
Defect detection of bottle preforms is a crucial step in ensuring the quality of PET bottle molding.In order to deploy defect detection models to industrial application scenarios for online detection and improve the accuracy of preform defect detection,a bottle preform defect detection model based on improved YOLOv8,YOLOv8-FEMA model,is proposed.Firstly,embed the FasterNet Block into the C2f module of the YOLOv8 model to reduce the number of model parameters;Then,the EMA mechanism is introduced to make the network more focused on useful feature information and improve the detection accuracy of the model.The experimental results show that compared to the YOLOv8n model,this model reduces the number of parameters and floating-point operations by 27%and 26%,respectively,and improves detection accuracy by 0.03.This model is deployed in bottle embryo defect detection software and can effectively detect bottle preforms defects.

bottle preforms detectiondefect detectionYOLOv8lightweighting

何永伦、张冲、陈儒、梁佳楠

展开 >

华南智能机器人创新研究院,广东 佛山 528399

广东省科学院智能制造研究所,广东 广州 510070

五邑大学机械与自动化工程学院,广东 江门 529020

瓶胚检测 缺陷检测 YOLOv8 轻量化

2024

自动化与信息工程
广东省科学院自动化工程研制中心 广州市自动化学会

自动化与信息工程

影响因子:0.319
ISSN:1674-2605
年,卷(期):2024.45(6)