针对表面肌电信号(surface electromyography,sEMG)手势识别使用卷积神经网络(convolu-tional neural network,CNN)提取特征不够充分,且忽略时序信息而导致识别精度不高的问题,本文创新性地提出了 一种融合双层注意力与多流卷积神经网络(multi-stream convolutional neural network,MS-CNN)的sEMG手势识别记忆网络模型.首先,利用滑动窗口生成的表面肌电图像作为该模型的输入;然后在MS-CNN中嵌入通道注意力层(channel attention module,CAM),弱化无关信息,使网络能够更加专注sEMG的有效特征;其次,通过长短期记忆网络(long short term memory network,LSTM)对输入的特征进行时序上的激励,关注更多sEMG的时序信息,让网络在时间维度上拥有更强的学习能力;最后,采用时序注意力(time-sequence attention,TSA)层对LSTM的状态进行关注,从而更好地学习重要肌肉信息,提高手势识别精度.在NinaPro数据集上进行实验测试,结果表明,使用本文提出的网络模型在DB1数据集和DB2数据集的手势识别精度分别达到了 86.42%和80.60%,高于大多数主流模型,充分验证了模型的有效性.