首页|点击率的深度交叉注意力预估模型

点击率的深度交叉注意力预估模型

扫码查看
为了区分不同高阶交叉特征的重要程度并剔除冗余交叉特征,提高点击率的预估精度,提出了 一种深度交叉注意力预估网络(deep cross attention prediction network,DAPN)模型.它将具有稀疏高维特征的输入信息表示为低维稠密向量后,分别送入因子分解机(factorization machine,FM)和深度交叉注意力层(deep cross attention,DCA).FM通过一阶特征和二阶特征交叉挖掘训练数据中从未出现或者很少出现的低阶交叉特征.DCA层利用缩放点积注意力机制(dot-product attention,DP_Att)设计交叉注意力层,用于区分高阶交叉特征的重要度,并设计深度神经网络(deep neural network,DNN)实现对高阶交叉特征建模.仿真表明,D APN在MovieLens-1 m和Avazu等公开数据集上均具有良好的预估性能,它使用并行结构能同时有效地学习低阶和高阶交叉特征,提高预估精度.
Prediction model of deep cross attention based on click through rate

click through rate estimationattention mechanismdeep neural network(DNN)feature crossover

赵佰亭、梁润、贾晓芬

展开 >

安徽理工大学电气与信息工程学院,安徽淮南232001

安徽理工大学省部共建深部煤矿采动响应与灾害防控国家重点实验室,安徽淮南232001

点击率预估 注意力机制 深度神经网络(DNN) 特征交叉

国家自然科学基金面上项目安徽省自然科学基金面上项目安徽高校协同创新项目安徽省重点研究与开发计划

521741412108085ME158GXXT-2020-54202004a07020043

2023

光电子·激光
天津理工大学 中国光学学会

光电子·激光

CSCD北大核心
影响因子:1.437
ISSN:1005-0086
年,卷(期):2023.34(6)
  • 4