首页|损坏图像下基于风格归一化与全局注意力的行人重识别

损坏图像下基于风格归一化与全局注意力的行人重识别

扫码查看
针对当前网络难以应对各种损坏类型的行人图像与易丢失跨维信息的问题,提出了一种损坏图像下基于风格归一化与全局注意力的行人重识别(pedestrain re-identification,ReID)方法.该方法通过平滑极大单元的风格归一化与恢复(smooth maximum unit-style normalization and restitu-tion,SM-SNR)模块中的实例规范化(instance normalization,IN)过滤掉域中的风格变化,同时平滑极大单元(smooth maximum unit,SMU)能使该模块更充分地从删除的信息中提取行人相关特征并将其恢复至网络中,缓解损坏图像带来的风格差异.此外,全局注意力机制(global attention mechanism,GAM)通过关注通道与空间之间的相互作用,以捕获3个维度上的显著行人特征,减少跨维信息的丢失,最终使本模型在面对行人损坏图像时的识别能力得到有效提高,且保留了在干净数据集上的竞争力.实验结果表明,本算法在损坏测试集上的各项指标与目前主流算法对比具有显著的优越性.其中,本模型与2021年的CIL模型使用CUHK03数据集比较的结果为:在Corrupted Eval 上,R-1、mAP 和 mINP 分别提高了 15.18%、15.75%与 11.65%;在 Clean Eval 上,R-1 与 mINP 仅降低了 0.24%、0.75%,mAP 提升了 0.25%.
Pedestrian re-identification based on style normalization and global attention in corrupted images

pedestrian re-identification(ReID)pedestrian corrupted imagesmooth maximum unit-style normalization and restitution(SM-SNR)moduleglobal attention mechanism(GAM)

熊炜、刘粤、许婷婷、孙鹏、赵迪、李利荣

展开 >

湖北工业大学电气与电子工程学院,湖北武汉430068

襄阳湖北工业大学产业研究院,湖北襄阳441003

美国南卡罗来纳大学计算机科学与工程系,南卡罗来纳哥伦比亚29201

行人重识别(ReID) 行人损坏图像 平滑极大单元的风格归一化与恢复(SM-SNR) 全局注意力机制(GAM)

国家自然科学基金国家自然科学基金湖北省自然科学基金湖北省科技厅重大专项襄阳湖北工业大学产业研究院科研项目国家留学基金

61571182616011772019CFB5302019ZYYD020XYYJ2022Co5201808420418

2023

光电子·激光
天津理工大学 中国光学学会

光电子·激光

CSCD北大核心
影响因子:1.437
ISSN:1005-0086
年,卷(期):2023.34(8)
  • 2