首页|基于改进DeblurGAN-v2的运动模糊农作物害虫图像复原方法

基于改进DeblurGAN-v2的运动模糊农作物害虫图像复原方法

扫码查看
为对巡检机器人在巡检过程中产生的运动模糊图像进行高效精准识别,提出了一种基于改进DeblurGAN-v2的运动模糊农作物害虫图像复原方法。为有效提取图像重要特征,该方法将通道注意力(channel attention,CA)机制集成到DeblurGAN-v2主干网格中,使模型更加关注细节特征,提高对运动模糊图像的复原能力;此外,在原模型特征提取网络顶层引入空间金字塔池化(spatial pryamid pooling,SPP)缓解图像多尺度变化造成对图像复原的负面影响,提高模型对图像复原的性能。基于实际农田环境建立的数据集所做的实验结果表明,改进后算法的PSNR、SSIM指标分别为26。281 8 dB、0。947 3,较原模型提升了8、7。2个百分点。与其他主流模型的对比实验结果表明,本文方法对模糊图像的实际复原效果更优,对解决运动模糊农作物害虫的图像复原问题具有实际应用价值。
Image restoration of crop pests with motion blur based on im-proved DeblurGAN-v2
In order to make the motion blurred images generated by inspection robots recognize efficiently and accurately during the inspection,a motion blurred crop pest image restoration method based on improved DeblurGAN-v2 was proposed.In order to extract important features of image effectively,the channel attention(CA)mechanism was integrated into the backbone grid of DeblurGAN-v2 to make the model pay more attention to detail features,and improve the restoration ability of motion blurred images.In addition,the spatial pyramid pooling(SPP)was used on the top layer of the original model feature extraction network to alleviate the negative impact of multi-scale changes on image restoration and improve the performance of the model on image restoration.The experimental results of the data set established based on the actual farmland environment show that the PSNR and SSIM indexes of the improved algorithm are 26.281 8 dB and 0.947 3 respectively,which are 8 and 7.2 percentage points higher than the original model.Compared with other mainstream models,the experimental results show that the proposed method has a better effect on the actual restoration of blurred images,and has practical application value to solve the problem of image restoration of crop pests with motion blur.

motion blurdeep learningimage restorationDeblurGAN-v2channel attention(CA)mechanismspatial pyramid pooling(SPP)module

赵辉、黄镖、王红君、岳有军

展开 >

天津理工大学电气工程与自动化学院天津市复杂系统控制理论与应用重点实验室,天津 300384

运动模糊 深度学习 图像复原 DeblurGAN-v2 通道注意力(CA)机制 空间金字塔池化(SPP)模块

2025

光电子·激光
天津理工大学 中国光学学会

光电子·激光

北大核心
影响因子:1.437
ISSN:1005-0086
年,卷(期):2025.36(1)