首页|基于深度子空间学习和数据增强的滚动轴承故障诊断方法

基于深度子空间学习和数据增强的滚动轴承故障诊断方法

扫码查看
主成分分析网络(principal component analysis network,PCANet)作为一种基于深度子空间学习框架的网络模型,在多个应用领域展现出卓越的性能。然而,在滚动轴承故障诊断方面,PCA-Net 算法存在无法准确反映数据完整结构信息、鲁棒性差以及泛化能力较弱等问题。本文针对这些问题,提出了一种基于PCANet算法和数据增强的滚动轴承故障诊断方法。该方法利用L2,1范数学习滚动轴承振动信号的频域稀疏结构,从而抑制噪声数据,提高模型鲁棒性。此外,通过数据增强处理,不同类别的训练样本之间的差异性也得到显著增加,从而提高了模型的泛化能力。最后,实验结果表明,该方法明显提高了PCANet模型的鲁棒性和泛化能力,能够准确识别不同类型的滚动轴承故障。
A rolling bearing fault diagnosis method based on deep subspace learning and data augmentation
The principal component analysis network(PCANet),as a network model based on the deep subspace learning framework,has demonstrated remarkable performance in various application domains.However,in the field of rolling bearing fault diagnosis,the PCANet algorithm suffers from issues such as inaccurate reflection of data structural information,poor robustness,and limited generalization ability.To address these issues,this paper proposes a novel rolling bearing fault diagnosis method based on the PCANet algorithm and data augmentation.The proposed method utilizes the L2il-norm to learn the frequency domain sparse structure of the rolling bearing vibration signals,effectively suppressing noisy data and enhancing the robustness of the model.Moreover,through the data augmentation processing,the method significantly increases the variability between different classes of the training samples,thereby greatly improving the generalization ability of the model.Finally,experimental results demonstrate that the proposed method significantly enhances the robustness and generalization ability of the PCANet model,enabling accurate identification of different types of the rolling bearing faults.

rolling bearingprincipal component analysis networkdata augmentationL2,1-normfault diagnosis

张帅帅、张超、王肖锋

展开 >

天津理工大学天津市先进机电系统设计与智能控制重点实验室,天津 300384

彼合彼方机器人(天津)有限公司,天津 300401

天津理工大学机电工程国家级实验教学示范中心,天津 300384

滚动轴承 主成分分析网络(PCANet) 数据增强 L2U范数 故障诊断

2025

光电子·激光
天津理工大学 中国光学学会

光电子·激光

北大核心
影响因子:1.437
ISSN:1005-0086
年,卷(期):2025.36(1)