首页|基于YOLOv7和分形几何特征的桥梁病害检测

基于YOLOv7和分形几何特征的桥梁病害检测

扫码查看
针对复杂环境背景和噪声情况下,桥梁病害图像中特征提取不充分的问题,提出将分形几何特征与YOLOv7网络融合的方法来提高病害检测的精度。首先,设计分形特征模块(fractal feature module,FFM),得到桥梁病害图像的分形特征图;其次,设计了自适应特征融合层,将提取的分形特征融入YOLOv7网络,让网络获得表达能力更强的特征图;最后,引入坐标注意力机制(coordinate attention,CA),增强了网络对小病害的检测精度。实验对包含风化、裂缝、钢筋外露、腐蚀和剥落5种桥梁病害的复杂图像进行了检测,结果表明:在相同的数据集和迭代次数下,融入分形几何特征的YOLOv7网络相比于原始网络对上述5种病害检测的平均精度均值从82。94%提高到86。24%,其中,裂缝病害的检测平均精度提高最为显著,从75。92%提高到81。29%。
Detection of bridge diseases based on YOLOv7 and fractal geomet-ric features
Aiming at the problem of insufficient feature extraction in bridge disease images under complex environmental background and noise,the method of integrating fractal geometric features with YOLOv7 network is proposed to improve the accuracy of disease detection.Firstly,the fractal feature module(FFM)is designed to obtain the fractal feature map of bridge disease images.Secondly,the adaptive feature fusion layer is designed to integrate the extracted fractal features into the YOLOv7 network and the network can obtain more expressive feature map.Finally,the coordinate attention mechanism is introduced to enhance the detection accuracy of the network for small diseases.The experiment examines the complex images of five bridge diseases including efflorescence,crack,exposedbars,corrosionstain and spallation.The results show that,with the same dataset and numbers of iteration,the mean average precision of YOLOv7 network increases from 82.94%to 86.24%,and the average accuracy of crack disease detection increases the most significantly,from 75.92%to 81.29%.

target detectionfractal featuresYOLOv7adaptive fusion

廖延娜、李桂珍

展开 >

西安邮电大学电子工程学院,陕西西安 710121

目标检测 分形特征 YOLOv7 自适应融合

2025

光电子·激光
天津理工大学 中国光学学会

光电子·激光

北大核心
影响因子:1.437
ISSN:1005-0086
年,卷(期):2025.36(2)