首页|多层级深度特征融合的乳腺癌病理图像分类

多层级深度特征融合的乳腺癌病理图像分类

扫码查看
针对既有深度学习方法在乳腺癌病理图像全局与局部特征统一表达上的不足,将长距离建模的Transformer和强局部感知的卷积神经网络(convolutional neural network,CNN)相结合,提出一种多层级深度特征融合的乳腺癌病理图像分类方法。该方法以双分支并行的Deit-B和ResNet-18模型作为骨干架构,在双分支网络中间层和末端位置分别引入特征融合操作,有效加强了乳腺癌病理图像全局与局部深度特征的联合学习;此外,在CNN支流的残差模块间引入密集连接操作来提升中间层融合特征的信息传递。通过全局-局部特征提取与支流间-支流内特征交互,可更有效捕获用于乳腺癌病理图像分类的判别特征。在乳腺癌病理图像公共数据集BreakHis上的消融实验与对比实验结果证明所提出方法的有效性,此外可获得99。83%的最优分类结果。
Multi-level deep feature fusion for breast cancer histopathology im-age classification
Aiming at the deficiency of the existing deep learning methods in the unified expression of global and local features of breast cancer histopathology images,a breast cancer histopathology image classification method based on multi-level deep feature fusion is proposed by combining the long-distance modeling Transformer and strong local perception convolutional neural network(CNN).This method uses the dual-branch parallel Deit-B and ResNet-18 model as the backbone architecture,and introduces the feature fusion operations in the middle layer and end position of the dual-branch network respectively,which effectively strengthens the joint learning of global and local deep features of breast cancer histopathology images.In addition,dense connection operations are introduced between the residual modules of CNN tributaries to improve the information transmission of intermediate layer fusion features.Through global-local feature extraction and feature interaction between and within tributaries,discriminative features for breast cancer histopathology image classification can be captured more effectively.The ablation experiment and comparative experimental results on the public dataset of breast cancer histopathology images BreakHis prove the effectiveness of the proposed method,and the optimal classification accuracy of 99.83%can be obtained.

histopathology image classificationbreast cancerconvolutional neural network(CNN)Transformerfeature fusion

杨芳、邹迎、丁雪妍、张建新

展开 >

大连民族大学计算机科学与工程学院,辽宁大连 116600

大连理工大学电子信息与电气工程学部,辽宁大连 116024

病理图像分类 乳腺癌 卷积神经网络(CNN) Transformer 特征融合

2025

光电子·激光
天津理工大学 中国光学学会

光电子·激光

北大核心
影响因子:1.437
ISSN:1005-0086
年,卷(期):2025.36(2)