首页|美军城市作战反恐分队效能评估方法

美军城市作战反恐分队效能评估方法

扫码查看
以分布式认知任务分析与多模态数据驱动为理论基础,在通用智能导学框架的支持下设计外部评估引擎,综合利用机器学习算法分析处理视频、语音和模拟训练日志等信息,实现了城市反恐作战中室内清剿典型场景任务分队作战效能评估。该研究体系架构健全,智能化程度较高,扩展性较强。通过对该项目体系架构、关键技术和使用效果进行深入研究,得出相关结论,为分队级作战效能评估提供参考。
Efficiency evaluation method of the US urban combat counter-terrorism detachment
In recent years,the U.S.Army Combat Capabilities Development Command and the Vanderbilt University have jointly carried out research on how to evaluate the efficiency of urban counter-terrorism detachments in a training environment that combines virtual and real scenarios.The joint research program is aimed to enhance the combat capability of the US Army in urban counter-terrorism operations and ensure its ability of delivery.Based on the theoretical foundation of distributed cognitive task analysis and multi-modal data,an external evaluation engine has been designed with the support of the General Intelligence Framework for Tutoring,which comprehensively utilizes machine learning algorithms to process such information as video,voice and simulated training logs.This helps evaluate the combat efficiency of a typical indoor clearance task in urban counter-terrorism operations.The system has a sound architecture,a high degree of intelligence and goodscalability.An in-depth study of the system architecture,key technologies and effects is conducted and conclusions have been drawn that can provide references for the evaluation of combat efficiency at the detachment level.

urban combatcounter-terrorism detachmentefficiency evaluationcognitive task analysismulti-modal data-driven

叶磊、孙磊刚、王千、胡海

展开 >

国防科技大学试验训练基地,陕西 西安 710100

国防科技大学智能科学学院,湖南 长沙 410073

武警部队参谋部作战勤务保障大队,北京 100089

城市作战 反恐分队 效能评估 认知任务分析 多模态数据驱动

2024

国防科技
国防科学技术大学

国防科技

影响因子:0.646
ISSN:1671-4547
年,卷(期):2024.45(4)