首页|基于Lasso-Logistic回归构建晚发型胎儿生长受限列线图预测模型

基于Lasso-Logistic回归构建晚发型胎儿生长受限列线图预测模型

扫码查看
目的:分析基于超声多普勒血流参数及胎盘厚度构建的列线图模型对迟发型胎儿生长受限(fetal growth restriction,FGR)的预测价值.方法:本研究前瞻性纳入2022年10月至2024年5月在我院进行孕检并分娩的单胎孕妇330例,孕周范围为32~40周.其中,迟发型FGR组(观察组)143例,无FGR组(对照组)187例.采集两组孕妇的基本资料,以及胎儿静脉导管、脐动脉和大脑中动脉的血流频谱参数,并测量胎盘厚度.通过单因素分析比较两组间各项参数的差异.进一步采用Lasso-Logistic回归分析来确定FGR发生的独立预测因素,并据此构建了列线图预测模型.为了评估模型的预测价值,绘制受试者操作特征(receiver operating characteristic,ROC)曲线、校正曲线和收益曲线.结果:单因素分析显示,观察组胎儿的脐动脉收缩期与舒张期流速比(umbilical arterysystolic/diastolic velocity ratio,UA-S/D)、脐动脉阻力指数(umbilical artery resistance index,UA-RI)和脐动脉搏动指数(umbilical artery pulsatility index,UA-PI)值显著增高,而大脑中动脉收缩期与舒张期流速比(middle cerebral artery systolic-to-diastolic velocity ratio,MCA-S/D)、大脑中动脉阻力指数(middle cerebral artery resistance index,MCA-RI)、大脑中动脉搏动指数(middle cerebral artery pulsatility index,MCA-PI)、静脉导管加速度(ductus venosus acceleration,DV-a)、静脉导管峰值流速(ductus venosus peak velocity,DV-S)以及脑-胎盘比(cerebroplacental ratio,CPR)值显著降低,同时胎盘厚度较薄.这些差异与对照组相比均具有统计学意义(P<0.05).Lasso-Logistic 回归分析进一步揭示了UA-S/D、MCA-S/D、MCA-RI、CPR 以及胎盘厚度是迟发型FGR发生的最有价值的独立预测因素.基于此,构建了迟发型FGR的列线图预测模型,该模型的曲线下面积(area under the curve,AUC)达到了0.992,显示出较高的预测准确性.校正曲线表明模型的预测概率与实际概率拟合良好.此外,临床决策曲线分析显示,使用该模型可以获得正的临床净收益.结论:本研究表明,基于Lasso-Logistic回归构建的多因素预测列线图模型能够有效识别迟发型FGR的发生风险,从而为临床早期干预提供可视化的参考依据,有助于预防不良妊娠结局的发生.
Construction of a Nomogram Prediction Model for Late-onset Fetal Growth Restriction Based on Lasso-logistic Regression
Objective:To analyze the predictive value of a nomogram model based on ultrasound Doppler blood flow parameters and placental thickness for late-onset fetal growth restriction(FGR).Methods:This prospective study included 330 singleton pregnant women who underwent antenatal examination and delivered in our hospital from October 2022 to May 2024,with a gestational age range of 32-40 weeks.Among them,143 cases were in the late-onset FGR group(observation group),and 187 cases were in the non-FGR group(control group).Basic information of the pregnant women in both groups was collected,along with blood flow spectral parameters of the fetal ductus venosus,umbilical artery,and middle cerebral artery,and placental thickness was measured.Differences in various parameters between the two groups were compared using univariate analysis.Further,Lasso-Logistic regression analysis was performed to identify independent predictors of FGR occurrence,based on which a nomogram prediction model was constructed.To evaluate the predictive value of the model.Receiver operating characteristic(ROC)curves,calibration curves,and decision curves were plotted.Results:Univariate analysis revealed that the umbilical artery systolic-to-diastolic velocity ratio(UA-S/D),umbilical artery resistance index(UA-RI),and umbilical artery pulsatility index(UA-PI)values were significantly higher in the observation group compared to the control group,while the middle cerebral artery systolic-to-diastolic velocity ratio(MCA-S/D),middle cerebral artery resistance index(MCA-RI),middle cerebral artery pulsatility index(MCA-P1),ductus venosus acceleration(DV-a),ductus venosus peak velocity(DV-S),and cerebroplacental ratio(CPR)values were significantly lower,accompanied by thinner placental thickness.These differences were statistically significant(P<0.05).Lasso-Logistic regression analysis further identified UA-S/D,MCA-S/D,MCA-RI,CPR,and placental thickness as the most valuable independent predictors of late-onset FGR.Based on these factors,a nomogram prediction model for late-onset FGR was constructed,with an area under the curve(AUC)of 0.992,indicating high predictive accuracy.The calibration curve demonstrated good agreement between the predicted probabilities and actual probabilities.Additionally,clinical decision curve analysis showed that using this model could yield positive net clinical benefits.Conclusion:This study demonstrates that the multi-factor prediction nomogram model based on Lasso-Logistic regression can effectively identify the risk of late-onset FGR,providing a visual reference for early clinical intervention and contributing to the prevention of adverse pregnancy outcomes.

fetal growth restrictionDoppler ultrasoundnomogramprediction model

张露萍、李晋月、杨忠

展开 >

绵阳市人民医院,四川 621000

泸州市妇幼保健院,四川 646000

胎儿生长受限 多普勒超声 列线图 预测模型

2025

影像科学与光化学
中国科学院理化技术研究所 中国感光学会

影像科学与光化学

影响因子:0.287
ISSN:1674-0475
年,卷(期):2025.43(1)