首页|简化参考作物蒸发蒸腾量公式在陕西关中地区的适用性研究

简化参考作物蒸发蒸腾量公式在陕西关中地区的适用性研究

Comparison of Simplified Calculation Methods for Reference Crop Evapotransporation in Guanzhong Region of Shaanxi Province

扫码查看
为满足关中地区气象资料不全区域的ET0计算需求,选用Priestley-Taylor、Hargreaves-Samani、Hargreaves校正、Imark-Allen拟合法等简化计算公式计算了关中地区10个典型站点41 a的月ET0,寻求适合该地区的简化公式.以FAO-56 Penman-Monteith(PM)计算结果为标准,进行对比分析.结果表明,Hargreaves系列法在年际和年内变化趋势上与PM法吻合良好,但该系列法计算的ET0明显大于PM法计算结果;Irmak-Allen法只在年内变化趋势与PM法接近,而年际变化趋势差异较大.Priestley-Taylor法在关中中西部偏差较小,Hargreaves 校正法、Irmak-Allen法在关中东部偏差较小.
In order to obtain an appropriate simplified calculation methods of ET0 with lacking meteorological data in Guanzhong region of Shaanxi province,Priestley-Taylor,Hargreaves-Samani,Hargreaves correction and Irmak-Allen fitting method were used to calculate the monthly ET0 of ten weather stations in Shaanxi Guanzhong district from 1961 to 2001,the calculated results of FAO-56 Penman-Monteith(PM) were used as the standard to evaluate the other four simplified methods.Results showed that the yearly and monthly tendencies of ET0 calculated by Hargreaves series methods were fitted well with the results of the PM equation,however,their calculated results were significantly larger than those of the PM equation.The monthly ET0 of Irmak-Allen fitting method was close to the value of the PM method,while the yearly ET0 did not perform well.Priestley-Taylor method had less error in the middle and west districts of Guanzhong region,while Hargreaves correction method and Irmak-Allen fitting method behaved well in the east of Guanzhong region.

reference crop evapotransporation(ET0)Penman-MonteithPriestley-TaylorHargreaves-SamaniHargreaves correctionIrmak-Allen fitting methodGuanzhong Region

薛璐、牛文全、张子卓、张珂萌

展开 >

西北农林科技大学水利与建筑工程学院,陕西杨凌712100

西北农林科技大学水土保持研究所,陕西杨凌712100

ET0 PM法 Priestley-Taylor法 Hargreaves-Samani法 Hargreaves校正法 Irmak-Allen拟合法 关中地区

国家高技术研究发展计划(863)高等学校学科创新引智计划

2011AA100507B12007

2015

灌溉排水学报
水利部农田灌溉研究所,中国农科院农田灌溉研究所 中国水利学会,国家灌溉排水委员会

灌溉排水学报

CSTPCDCSCD北大核心
影响因子:0.502
ISSN:1672-3317
年,卷(期):2015.34(6)
  • 4
  • 6