首页|Spatial pattern of plant species diversity and the influencing factors in a Gobi Desert within the Heihe River Basin, Northwest China
Spatial pattern of plant species diversity and the influencing factors in a Gobi Desert within the Heihe River Basin, Northwest China
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
国家科技期刊平台
NETL
NSTL
万方数据
维普
Understanding the spatial pattern of plant species diversity and the influencing factors has important implications for the conservation and management of ecosystem biodiversity.The transitional zone between biomes in desert ecosystems,however,has received little attention in that regard.In this study,we conducted a quantitative field survey (including 187 sampling plots) in a 40-km2 study area to determine the spatial pattern of plant species diversity and analyze the influencing factors in a Gobi Desert within the Heihe River Basin,Northwest China.A total of 42 plant species belonging to 16 families and 39 genera were recorded.Shrub and semi-shrub species generally represented the major part of the plant communites (covering 90% of the land surface),while annual and perennial herbaceous species occupied a large proportion of the total recorded species (71%).Patrick richness index (R),Shannon-Wiener diversity index (H),Simpson's dominance index (D),and Pielou's evenness index (J) were all moderately spatially variable,and the variability increased with increasing sampling area.The semivariograms for R and H'were best fitted with Gaussian models while the semivariograms for D and J were best fitted with exponential models.Nugget-to-still ratios indicated a moderate spatial autocorrelation for R,H',and D while a strong spatial autocorrelation was observed for J.The spatial patterns of R and H'were closely related to the geographic location within the study area,with lower values near the oasis and higher values near the mountains.However,there was an opposite trend for D.R,H',and D were significantly correlated with elevation,soil texture,bulk density,saturated hydraulic conductivity,and total porosity (P<0.05).Generally speaking,locations at higher elevations tended to have higher species richness and diversity and the higher elevations were characterized by higher values in sand and gravel contents,bulk density,and saturated hydraulic conductivity and also by lower values in total porosity.Furthermore,spatial variability of plant species diversity was dependent on the sampling area.
species diversityspatial heterogeneityenvironmental factorsGobi Deserttransitional zone
ZHANG Pingping、SHAO Ming'an、ZHANG Xingchang
展开 >
Institute of Soil and Water Conservation,Northwest A&F University,Yangling 712100,China
State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,Institute of Soil and Water Conservation,Chinese Academy of Sciences and Ministry of Water Resources,Yangling 712100,China
Key Laboratory of Ecosystem Network Observation and Modeling,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China
This study was financially supported by the National Natural Science Foundation of ChinaAction Plan for West Development Project of Chinese Academy of Sciences