首页|Interactive effects of deficit irrigation and vermicompost on yield, quality, and irrigation water use efficiency of greenhouse cucumber

Interactive effects of deficit irrigation and vermicompost on yield, quality, and irrigation water use efficiency of greenhouse cucumber

扫码查看
Water scarcity is the most significant barrier to agricultural development in arid and semi-arid regions. Deficit irrigation is an effective solution for managing agricultural water in these regions. The use of additives such as vermicompost (VC) to improve soil characteristics and increase yield is a popular practice. Despite this, there is still a lack of understanding of the interaction between irrigation water and VC on various crops. This study aimed to investigate the interaction effect of irrigation water and VC on greenhouse cucumber yield, yield components, quality, and irrigation water use efficiency (IWUE). The trials were done in a split-plot design in three replicates in a semi-arid region of southeastern Iran in 2018 and 2019. Three levels of VC in the experiments, i.e., 10 (V1), 15 (V2), and 20 t/hm2 (V3), and three levels of irrigation water, i.e., 50% (I1), 75% (I2), and 100% (I3) of crop water requirement were used. The results showed that the amount of irrigation water, VC, and their interaction significantly affected cucumber yield, yield components, quality, and IWUE in both years. Reducing the amount of irrigation water and VC application rates reduced the weight, diameter, length, and cucumber yield. The maximum yield (175 t/hm2) was recorded in full irrigation using 20 t/hm2 of VC, while the minimum yield (98 t/hm2) was found in I1V1 treatment. The maximum and minimum values of IWUE were recorded for I1V3 and I3V1 treatments as 36.07 and 19.93 kg/(m3•hm2), respectively. Moreover, reducing irrigation amount decreased chlorophyll a and b, but increased vitamin C. However, the maximum carbohydrate and protein contents were obtained in mild water-stressed conditions (I2). Although adding VC positively influenced the value of quality traits, no significant difference was observed between V2 and V3 treatments. Based on the results, adding VC under full irrigation conditions leads to enhanced yield and IWUE. However, in the case of applying deficit irrigation, adding VC up to a certain level (15 t/hm2) increases yield and IWUE, after which the yield begins to decline. Because of the salinity of VC, using a suitable amount of it is a key point to maximize IWUE and yield when applying a deficit irrigation regime.

irrigation water use efficiencygreenhousesize and weight of fruitsoil amendmentsemi-arid region

Halimeh PIRI、Amir NASERIN、Ammar A ALBALASMEH

展开 >

Department of Water Engineering,Faculty of College of Water and Soil,University of Zabol,Zabol 9861335856,Iran

Department of Water Engineering,Agricultural Sciences and Natural Resources University of Khuzestan,Mollasani 6341773637,Iran

Department of Natural Resources and the Environment,Faculty of Agriculture,Jordan University of Science and Technology,Irbid 22110,Jordan

UOZ-GR-1837

2022

干旱区科学
中国科学院新疆生态与地理研究所,科学出版社

干旱区科学

CSTPCDCSCDSCI
影响因子:1.743
ISSN:1674-6767
年,卷(期):2022.14(11)
  • 3