首页|Evaluation of CRU TS, GPCC, AgMERRA, and AgCFSR meteorological datasets for estimating climate and crop variables: A case study of maize in Qazvin Province, Iran

Evaluation of CRU TS, GPCC, AgMERRA, and AgCFSR meteorological datasets for estimating climate and crop variables: A case study of maize in Qazvin Province, Iran

扫码查看
In the past few decades, meteorological datasets from remote sensing techniques in agricultural and water resources management have been used by various researchers and managers. Based on the literature, meteorological datasets are not more accurate than synoptic stations, but their various advantages, such as spatial coverage, time coverage, accessibility, and free use, have made these techniques superior, and sometimes we can use them instead of synoptic stations. In this study, we used four meteorological datasets, including Climatic Research Unit gridded Time Series (CRU TS), Global Precipitation Climatology Centre (GPCC), Agricultural National Aeronautics and Space Administration Modern-Era Retrospective Analysis for Research and Applications (AgMERRA), Agricultural Climate Forecast System Reanalysis (AgCFSR), to estimate climate variables, i.e., precipitation, maximum temperature, and minimum temperature, and crop variables, i.e., reference evapotranspiration, irrigation requirement, biomass, and yield of maize, in Qazvin Province of Iran during 1980–2009. At first, data were gathered from the four meteorological datasets and synoptic station in this province, and climate variables were calculated. Then, after using the AquaCrop model to calculate the crop variables, we compared the results of the synoptic station and meteorological datasets. All the four meteorological datasets showed strong performance for estimating climate variables. AgMERRA and AgCFSR had more accurate estimations for precipitation and maximum temperature. However, their normalized root mean square error was inferior to CRU for minimum temperature. Furthermore, they were all very efficient for estimating the biomass and yield of maize in this province. For reference evapotranspiration and irrigation requirement CRU TS and GPCC were the most efficient rather than AgMERRA and AgCFSR. But for the estimation of biomass and yield, all the four meteorological datasets were reliable. To sum up, GPCC and AgCFSR were the two best datasets in this study. This study suggests the use of meteorological datasets in water resource management and agricultural management to monitor past changes and estimate recent trends.

climate variablescrop variablesmeteorological datasetsprecipitationreference evapotranspirationirrigation requirementIran

Faraz GORGIN PAVEH、Hadi RAMEZANI ETEDALI、Brian COLLINS

展开 >

Syracuse University,Syracuse 13244,USA

Imam Khomeini International University,Qazvin 34149-16818,Iran

Centre for Crop Science,The University of Queensland,Brisbane 4072,Australia

authors would like to express their deep gratitude to FAO for providing the AquaCrop model.They also thank the freely availa

2022

干旱区科学
中国科学院新疆生态与地理研究所,科学出版社

干旱区科学

CSTPCDCSCDSCI
影响因子:1.743
ISSN:1674-6767
年,卷(期):2022.14(12)
  • 57