首页|基于改进BP神经网络算法的钻锪工艺参数优化

基于改进BP神经网络算法的钻锪工艺参数优化

扫码查看
针对目前工业机器人钻锪工艺参数选取主要依靠经验法的问题,提出基于改进BP神经网络算法的钻锪工艺参数优化方法.分析钻锪工艺过程并针对工艺参数和加工质量的关系进行正交实验设计和相关性分析;针对哈里斯鹰算法的不足,在猎物逃脱几率和猎物跳跃强度两方面对其进行改进;运用改进的哈里斯鹰算法优化BP神经网络,并基于改进的BP神经网络算法建立工艺参数优化数学模型;采用fmincon函数求解最优工艺参数并进行实验验证.分析结果表明,与由经验法确定的工艺参数相比,优化后的工艺参数在孔径精度和锪窝深度精度方面分别提高了 17.9%和26.5%,满足了加工质量要求,并保证了加工效率.
Optimization of Drilling and Countersink Process Parameters Based on Improved BP Neural Network Algorithm
Aiming at the current problem that the selection of drilling and countersink process parameters of industrial robots mainly depends on empirical method,a method of optimizing the technological parameters of drilling and countersink based on improved BP neural network algorithm is proposed.The technological process of drilling and countersink is ana-lyzed,and orthogonal experiment design and correlation analysis are carried out for the relationship between technological parameters and processing quality.Aiming at the deficiency of the harris eagle algorithm,two aspects of prey escape proba-bility and prey jump intensity are improved,the improved Harris Hawk algorithm is used to optimize the BP neural network,and the mathematical model of technological parameters optimization is established based on the improved BP neural net-work algorithm.The fmincon function is used to solve the optimal technological parameters and experimental verification is carried.The results show that the aperture accuracy and countersink depth accuracy of the optimized process parameters are 17.9%and 26.5%,which are higher than those determined by the empirical method respectively.It not only meets the re-quirements of machining quality,but also ensures the machining efficiency.

aperture precisioncountersink depth accuracyprocess parameterBP neural network algorithmharris hawk algorithm

李岸、庞志愿

展开 >

沈阳工业大学机械工程学院

孔径精度 锪窝深度精度 工艺参数 BP神经网络算法 哈里斯鹰算法

2024

工具技术
成都工具研究所

工具技术

CSTPCD北大核心
影响因子:0.147
ISSN:1000-7008
年,卷(期):2024.58(2)
  • 10