首页|基于GA-BP与NSGA-Ⅱ的数控铣削参数优化研究

基于GA-BP与NSGA-Ⅱ的数控铣削参数优化研究

扫码查看
高效低碳制造是可持续发展的关键,而数控铣削作为常用的金属表面加工方法存在刀具寿命短、碳排放量高的问题.提出基于NSGA-Ⅱ的GA-BP多目标优化方法,通过分析不同加工参数条件下的数控铣削刀具寿命及碳排放数据集,建立GA-BP神经网络刀具寿命及碳排放预测模型.基于NSGA-Ⅱ算法建立以刀具寿命、碳排放量为目标的主体优化模型,调用构建的GA-BP神经网络模型作为目标函数进行优化求解,得到Pareto最优解集.对Pareto最优解集进行TOPSIS最优解决策,得到综合优化刀具寿命与碳排放量的加工参数组合.优化结果表明:该方法既可以对数控铣削刀具寿命及碳排放量进行准确预测,还可以对两者进行有效优化,对数控铣削参数优化具有一定的理论指导意义.
Research on Optimization of CNC Milling Parameters Based on GA-BP and NSGA-Ⅱ
Efficient and low-carbon manufacturing is the key to exploring sustainable development.As a common cold machining method for metal surfaces,CNC milling often has the problems of short tool life and high carbon emissions.This paper proposes a GA-BP multi-objective optimization method based on NSGA-Ⅱ.Based on the data sets of CNC milling tool life and carbon emission under different machining parameters,the GA-BP neural network tool life and carbon emission pre-diction model is established.Based on the NSGA-Ⅱ algorithm,the main optimization model with tool life and carbon emis-sion as the goal is established,and the constructed GA-BP neural network model is called as the objective function to opti-mize and solve the Pareto optimal solution set.The TOPSIS optimal solution decision is made for the Pareto optimal solution set,and the combination of machining parameters for comprehensive optimization of tool life and carbon emissions is ob-tained.The optimization results show that this method can not only accurately predict the life and carbon emissions of CNC milling tools,but also effectively optimize them,which has certain theoretical guiding significance for the optimization of CNC milling parameters.

CNC millingtool lifecarbon emissionlow-carbon optimizationGA-BPNSGA-Ⅱ

李超文、尹瑞雪

展开 >

贵州大学机械工程学院

数控铣削 刀具寿命 碳排放 低碳优化 GA-BP NSGA-Ⅱ

国家自然科学基金

51765010

2024

工具技术
成都工具研究所

工具技术

CSTPCD北大核心
影响因子:0.147
ISSN:1000-7008
年,卷(期):2024.58(3)
  • 12