首页|盖板件高效铣削表面粗糙度预测与工艺参数优化

盖板件高效铣削表面粗糙度预测与工艺参数优化

扫码查看
为了保证7075 铝合金盖板件铣削表面质量和提高铣削加工效率,进行工艺参数优化,通过响应曲面法(RSM)构建铣削加工表面粗糙度预测模型,分析铣削工艺参数对表面粗糙度的影响规律.基于表面粗糙度预测模型建立高效铣削工艺参数优化目标方程,采用改进的粒子群算法(PSO)对目标方程进行优化,运用优化后的工艺参数对某盖板件进行铣削加工.试验结果表明:采用优化后的工艺参数进行盖板件铣削加工可以满足表面粗糙度要求,验证了预测模型的准确性和改进PSO方法的可行性.
Prediction of Surface Roughness and Optimization of Process Parameters for Efficient Milling of Cover Plate Parts
In order to ensure the surface quality of 7075 aluminum alloy and improve milling efficiency of cover plate parts during milling,a set of process parameters optimization,a prediction model for milling surface roughness are construc-ted by response surface method(RSM),and the influence of milling process parameters on surface roughness is analyzed.On the basis of a surface roughness prediction model,an efficient milling process parameter optimization objective equation is established.An improved particle swarm optimization(PSO)algorithm is used to optimize the objective equation,and a set of optimized process parameters are used to milling a certain cover plate.The experimental results show that the opti-mized set of efficient milling process parameters can meet the surface roughness requirements for cover plate machining,verifying the accuracy of the prediction model and the feasibility of improving the PSO method.

cover plate partsefficient millingsurface roughnessprediction modelprocess parameter optimization

张国政、周元枝、姜洪辉、彭易杭

展开 >

安徽机电职业技术学院机械工程学院

安徽机电职业技术学院互联网与通信学院

盖板件 高效铣削 表面粗糙度 预测模型 工艺参数优化

安徽省高校自然科学重点项目安徽省高校自然科学重点项目安徽省高校学科(专业)拔尖人才学术资助项目芜湖市科技成果转化计划项目

KJ2021A15192023AH052692GXBJZD20201082022cg21

2024

工具技术
成都工具研究所

工具技术

CSTPCD北大核心
影响因子:0.147
ISSN:1000-7008
年,卷(期):2024.58(4)
  • 1
  • 7