首页|基于改进K-means聚类定心算法的曲轴轴颈圆度误差评定

基于改进K-means聚类定心算法的曲轴轴颈圆度误差评定

扫码查看
曲轴轴颈的圆度误差作为曲轴必检的核心尺寸,直接影响曲轴的寿命和性能.针对圆度误差求解数据量多和计算复杂的问题,提出一种基于改进K-means聚类定心算法的圆度误差评定方法.该算法通过对轴颈采样通道的样本点进行环形聚类获得集合UK,同时以设计的目标控制器剔除UK 的噪声点,以UK 的最小二乘法圆度评定误差fm 来估计整个环形样本的误差.聚类值从K=5 循环迭代增加,直至fm 符合预设统计质量控制规划.评定结果表明,聚类定心算法的圆度误差评定方法能实现曲轴圆度误差的高效、精确评定.
Crankshaft Journal Roundness Error Assessment Based on Improved K-means Clustering Centering Algorithm
The roundness error of the crankshaft journal is a core dimension that must be inspected on the crankshaft,which directly affects the life and performance of the crankshaft.In order to solve the problem of large amount of roundness error data and complex calculation,a roundness error assessment method based on the improved K-means clustering center-ing algorithm is proposed.This algorithm obtains the set UK by performing circular clustering on the sample points of the journal sampling channel.At the same time,the designed target controller is used to eliminate the noise points of UK,and the least square roundness evaluation error fm of UK is used to estimate the error of the entire circular sample.The clustering value increases iteratively from K=5 until fm meets the preset SQC rules.The evaluation results show that the roundness er-ror assessment method of the cluster centering algorithm can achieve efficient and accurate assessment of crankshaft round-ness error.

crankshaftroundness evaluationK-meanslustering centering algorithm

邹春龙、黄配乐、王生怀、冯乾新、王宸

展开 >

湖北汽车工业学院机械工程学院

东风设备制造有限公司

曲轴 圆度评定 K-means 聚类定心

工信部"高档数控机床与基础制造装备"项目湖北省重点研发计划湖北省自然科学基金湖北省教育厅科研项目湖北省教育厅科研项目湖北省优秀高校中青年科技创新团队项目

2018ZX040270012021BAA0562020CFB755T2020018Q20191801T2022027

2024

工具技术
成都工具研究所

工具技术

CSTPCD北大核心
影响因子:0.147
ISSN:1000-7008
年,卷(期):2024.58(6)
  • 7