首页|基于双分支卷积神经网络和迁移学习的刀具磨损状态预测方法

基于双分支卷积神经网络和迁移学习的刀具磨损状态预测方法

扫码查看
刀具作为切削过程中状态变化最多的要素,其实时健康状态直接影响加工精度和生产质量.在同一工况下,模型在历史刀具磨损数据集下训练完成后,在新采集的刀具磨损数据集中数据分布不同,不能准确预测刀具的磨损状态.针对这一现象,提出一种基于双分支卷积神经网络和迁移学习的刀具磨损状态预测方法,双分支结构提高了网络的收敛速度和精度.迁移学习通过使用最大均值差异的方法对齐源域和目标域的边缘分布,提升模型在目标域上的性能.经实验验证,迁移后的模型在新采集数据集上预测准确率和有标签迁移学习准确率相差不大,证明该方法能够在新采集数据集上较为准确地预测刀具磨损状态.
Tool Wear State Prediction Based on Two-branch Convolutional Neural Network and Transfer Learning
As the element with the most state changes in the cutting process,the tool's real-time health state directly affects machining accuracy and production quality.Under the same working condition,the model is trained under the histori-cal tool wear dataset,the model cannot accurately predict the tool wear state on the newly collected tool wear dataset due to the different data distribution,and thus the model cannot accurately predict the tool wear state.To address this phenome-non,a tool wear state prediction method based on a two-branch convolutional neural network and transfer learning is pro-posed,where the two-branch structure improves the convergence speed and accuracy of the network.Transfer learning im-proves the performance of the model on the target domain by aligning the edge distributions of the source and target domains using the maximum mean discrepancy method.After experimental verification,the prediction accuracy of the migrated model is not much different from the labeled transfer learning accuracy on the newly collected dataset,which proves that the meth-od is able to predict the tool wear state more accurately on the newly collected dataset.

tool weartwo-branch networktransfer learningmaximum mean discrepancy

马腾、陈彬强、姚斌

展开 >

厦门大学航空航天学院

刀具磨损 双分支网络 迁移学习 最大均值差异

2024

工具技术
成都工具研究所

工具技术

CSTPCD北大核心
影响因子:0.147
ISSN:1000-7008
年,卷(期):2024.58(11)