首页|Tunable quantum anomalous Hall effects in ferromagnetic van der Waals heterostructures

Tunable quantum anomalous Hall effects in ferromagnetic van der Waals heterostructures

扫码查看
The quantum anomalous Hall effect(QAHE)has unique advantages in topotronic applications,but it is still challenging to realize the QAHE with tunable magnetic and topological properties for building functional devices.Through systematic first-principles calculations,we predict that the in-plane magnetization induced QAHE with Chern numbers C=±1 and the out-of-plane magnetization induced QAHE with high Chern numbers C=±3 can be realized in a single material candidate,which is composed of van der Waals(vdW)coupled Bi and MnBi2Te4 monolayers.The switching between different phases of QAHE can be controlled in multiple ways,such as applying strain or(weak)magnetic field or twisting the vdW materials.The prediction of an experimentally available material system hosting robust,highly tunable QAHE will stimulate great research interest in the field.Our work opens a new avenue for the realization of tunable QAHE and provides a practical material platform for the development of topological electronics.

quantum anomalous Hall effecttopological quantum phase transitionvan der Waals heterostructurestunable Chern numberhigh Chern number

Feng Xue、Yusheng Hou、Zhe Wang、Zhiming Xu、Ke He、Ruqian Wu、Yong Xu、Wenhui Duan

展开 >

Beijing Academy of Quantum Information Sciences,Beijing 100193,China

State Key Laboratory of Low Dimensional Quantum Physics,Department of Physics,Tsinghua University,Beijing 100084,China

Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices,Center for Neutron Science and Technology,School of Physics,Sun Yat-sen University,Guangzhou 510275,China

State Key Laboratory of Surface Physics,Key Laboratory of Computational Physical Sciences,and Department of Physics,Fudan University,Shanghai 200433,China

Frontier Science Center for Quantum Information,Beijing 100084,China

Department of Physics and Astronomy,University of California-Irvine,Irvine,CA 92697,USA

Tencent Quantum Laboratory,Tencent Technology(Shenzhen)Co.Ltd,Shenzhen 518057,China

RIKEN Center for Emergent Matter Science(CEMS),Wako,351-0198,Japan

Institute for Advanced Study,Tsinghua University,Beijing 100084,China

展开 >

国家重点研发计划国家重点研发计划Basic Science Center Project of National Natural Science Foundation of China国家杰出青年科学基金国家自然科学基金国家自然科学基金Beijing Advanced Innovation Center for Future ChipBeijing Advanced Innovation Center for Materials Genome EngineeringDepartment of Energy-Basic Energy Sciences of the USA

2018YFA03071002018YFA030560352388201120254051210451811874035DE-FG02-05ER46237

2024

国家科学评论(英文版)

国家科学评论(英文版)

CSTPCD
ISSN:
年,卷(期):2024.11(3)
  • 49