首页|基于数据包头序列的物联网恶意流量检测

基于数据包头序列的物联网恶意流量检测

扫码查看
现有的基于机器学习(ML)的恶意流量检测方法,通常以高维的流量特征作为输入,并采用复杂模型,在实践中产生高误报率且资源占用较高。更重要的是,加密协议的广泛使用,使得数据包有效载荷特征很难被访问。幸运的是,物联网(IoT)设备的网络行为通常是有规律和周期性的,该特征反映在通信数据包序列上,每个数据包一定程度上描述了一次网络事件。基于此,本文提出了基于数据包头序列的恶意流量检测方法。它将流量序列转换为网络事件序列,并计算一组特征(即序列性、频率性、周期性和爆发性)来描述网络行为。实验环境包含一组真实的物联网设备,并将提出的方法部署在树莓派模拟的网关上。实验结果表明,与最新的检测方法相比,本文提出的方法能够在复杂网络环境下保持高准确性和低误报率,并提升了处理速率。
IoT traffic anomaly detection based on header sequence
Existing malicious traffic detection methods based on machine learning(ML)usually take high-dimensional traffic features as input and use complex models.In practice,it generates high false alarm rates and has high re-source consumption.More importantly,the widespread use of encryption protocols makes packet payload features difficult to access.Fortunately,the network behavior of Internet of Things(IoT)devices is usually regular and pe-riodic,and the feature is reflected in the sequence of communication packets,each of which describes a network event to some extent.Based on this,this paper proposes a malicious traffic detection method based on packet head-er sequences.It converts traffic sequences into network event sequences and computes a set of features(namely se-quence,frequency,surge,and seasonality)to describe the network behavior.The experimental environment con-tains a set of real IoT devices,and the proposed method is deployed on a Raspberry Pi simulated gateway.The ex-perimental results show that the proposed method is able to maintain high accuracy and low false alarm rate in com-plex network environments and improve the processing rate compared to the state-of-the-art detection methods.

machine learning(ML)traffic anomaly detectionnetwork behaviorInternet of Things(IoT)securitypacket header sequence

卫重波、谢高岗、刁祖龙、张广兴

展开 >

中国科学院计算技术研究所 北京 100190

中国科学院大学 北京 100190

中国科学院计算机网络信息中心 北京 100190

紫金山实验室 南京 211111

展开 >

机器学习(ML) 恶意流量检测 网络行为 物联网(IoT)安全 数据包头序列

2024

高技术通讯
中国科学技术信息研究所

高技术通讯

CSTPCD北大核心
影响因子:0.19
ISSN:1002-0470
年,卷(期):2024.34(8)