首页|基于深度学习的非合作目标关键点检测及匹配方法

基于深度学习的非合作目标关键点检测及匹配方法

扫码查看
针对非合作目标相对位姿测量任务中特征点检测及双目匹配环节易受环境干扰、鲁棒性弱的问题,提出一种更具实用价值的方法。首先,将具有代表性的某型号卫星模型视为非合作目标实验对象,并针对其结构特点开发了关键点标注软件,以生成数据集并用于深度卷积神经网络(DCNN)模型的训练;之后使用不同算法对DCNN模型输出的两类信息进行分析,完成关键点检测;最后通过对识别对象进行双目匹配,从而间接完成关键点双目匹配。将该方法应用到自主搭建的系统平台,并与传统算法进行对比,结果表明,该算法可在实际应用环境中完成非合作目标的关键点检测及其双目匹配,并具有较强的鲁棒性,为非合作目标相对位姿测量任务的关键环节提供了一种新思路。
Key point detection and matching method for non-cooperative targets based on deep learning
To address the challenges in the non-cooperative target relative pose measurement tasks,where feature point detection and binocular matching are prone to environmental interference and exhibit limited robustness,a more practical approach is proposed.Firstly,the satellite model is selected as a non-cooperative target for experimental evaluations.A keypoint annotation software based on its structural characteristics is developed to generate a dataset for training the deep convolutional neural network(DCNN)model.Subsequently,the analysis of the two types of information produced by the DCNN model is conducted by utilizing various algorithmic methods for keypoint detec-tion.Consequently,the binocular matching of keypoints is achieved indirectly through the process of object recogni-tion.Finally,this approach has been implemented within an independently developed system platform and its effi-cacy has been compared with that of traditional algorithms.The results indicate that the algorithm can complete keypoint detection and binocular matching of non-cooperative targets in practical application environments,with strong robustness.It provides a new perspective for the critical steps in non-cooperative target relative pose meas-urement tasks.

non-cooperative targetrelative pose measurementdeep learningkey point detectionbinocular stereo vision

宋佳秋、朱浩然、刘福才

展开 >

燕山大学工程训练中心 秦皇岛 066004

燕山大学智能控制系统与智能装备教育部工程研究中心 秦皇岛 066004

非合作目标 相对位姿测量 深度学习 关键点检测 双目立体视觉

2024

高技术通讯
中国科学技术信息研究所

高技术通讯

CSTPCD北大核心
影响因子:0.19
ISSN:1002-0470
年,卷(期):2024.34(8)