首页|Bi-SCNN:二值随机混合神经网络加速器

Bi-SCNN:二值随机混合神经网络加速器

扫码查看
二值神经网络(BNN)具有硬件友好的特性,但为了保证计算精度,在输入层仍需要使用浮点或定点计算,增加了硬件开销.针对该问题,本文将另一种同样具有硬件友好特性的随机计算方法应用于BNN,实现了 BNN输入层的高效计算,并设计了二值随机混合计算架构Bi-SCNN.首先,在BNN输入层使用高精度的随机运算单元,实现了与定点计算近似的精度;其次,通过在处理单元(PE)内和PE间2个层次对随机数生成器进行复用,并优化运算单元,有效降低了硬件开销;最后,根据输入数据的特性对权值配置方式进行优化,进而降低了整体计算延迟.相比于现有性能最优的BNN加速器,Bi-SCNN在保证计算精度的前提下,实现了 2.4倍的吞吐量、12.6倍的能效比和2.2倍的面积效率提升,分别达到 2.2 TOPS、7.3 TOPS·W-1 和 1.8 TOPS·mm-2.
Bi-SCNN:a binary-stochastic hybrid neural network accelerator
Binary neural networks(BNNs)possess hardware-friendly characteristics,yet to ensure computational accura-cy,floating-point or fixed-point calculations are still required at the input layer,increasing hardware overhead.To address this issue,this paper applies another hardware-friendly stochastic computing method to BNNs,achieving efficient computation at the BNN input layer and designing a binary stochastic computing neural network(Bi-SC-NN)architecture.Firstly,high-precision stochastic computing units are used in the BNN input layer,achieving ac-curacy comparable to fixed-point computation.Secondly,by reusing random number generators within and between processing elements(PEs)and optimizing the computing units,Bi-SCNN effectively reduces hardware overhead.Lastly,the paper optimizes weight configuration methods based on input data characteristics,thereby reducing over-all computational latency.Compared with the existing best-performing BNN accelerators,Bi-SCNN achieves a 2.4-fold increase in throughput,a 12.6-fold increase in energy efficiency,and a 2.2-fold improvement in area efficien-cy,reaching 2.2 TOPS,7.3 TOPS·W-1,and 1.8 TOPS·mm-2 respectively.

binary neural network(BNN)stochastic computing(SC)deep learning accelerator

于启航、文渊博、杜子东

展开 >

中国科学院计算技术研究所处理器芯片国家重点实验室 北京 100190

中国科学院大学 北京 100049

上海处理器技术创新中心 上海 201203

二值神经网络(BNN) 随机计算(SC) 神经网络加速器

2024

高技术通讯
中国科学技术信息研究所

高技术通讯

CSTPCD北大核心
影响因子:0.19
ISSN:1002-0470
年,卷(期):2024.34(12)