首页|基于双维度注意力残差收缩网络的滚动轴承故障诊断

基于双维度注意力残差收缩网络的滚动轴承故障诊断

扫码查看
主动运维技术是机械装备提高维修效率、降低维修成本、保证长时间稳定运行的必要保障。本文以滚动轴承作为研究对象,提出了一种基于双维度注意力残差收缩网络的智能故障诊断方法。该方法首先通过引入卷积注意力模块,分别对振动信号在空间与通道维度上的加权赋值来强化重要的特征,使网络的注意力集中在对故障分类更关键的信息上。其次,通过基于混合域注意力的软阈值化模块实现数据降噪以及去除特征中的冗余信息。实验结果表明,所提出的方法能够有效实现故障诊断和分类,且具有良好的鲁棒性。
Fault diagnosis of rolling bearing based on dual-dimensional attention residual shrinkage network
Active operation and maintenance technology is a necessary guarantee for mechanical equipment to improve its maintenance efficiency,reduce its maintenance cost,and ensure its long-term stable operation.In this paper,an intelligent fault diagnosis method based on dual dimensional attention residual shrinkage network is proposed,tak-ing rolling bearing as the research object.In the proposed method,firstly,a convolution attention module is intro-duced to weight the processed signal in its spatial dimension and channel dimension to strengthen important fea-tures,focusing the network's attention on information which is more critical for fault classification.Secondly,the functions of data denoising and removing redundant information in features are realized through an adopting soft thresholding module based on mixed-domain attention.Experimental results show that the proposed method can real-ize the effective diagnosis and classification of rolling bearing faults,and has good robustness.

rolling bearingdual-dimensional feature extractionsoft thresholdSwish activation functiondeep learning

陈昊杰、陈永毅、倪洪杰、张丹

展开 >

浙江工业大学信息工程学院 杭州 310023

滚动轴承 双维度特征提取 软阈值 Swish激活函数 深度学习

2024

高技术通讯
中国科学技术信息研究所

高技术通讯

CSTPCD北大核心
影响因子:0.19
ISSN:1002-0470
年,卷(期):2024.34(12)