首页|高模量碳纤维复合材料深海耐压壳体结构设计及试验

高模量碳纤维复合材料深海耐压壳体结构设计及试验

扫码查看
基于理论公式开展了千米级深海耐压复合材料等截面圆筒计算,在等截面圆筒设计壁厚的基础上,结合有限元仿真开展了轻量化环肋加筋耐压壳体结构优化设计以及千米级深海复合材料耐压壳体的结构稳定性和强度分析,最后通过静水压试验对所设计复合材料耐压壳体进行了考核验证.研究发现,对于环肋加筋复合材料耐压壳体,其失效模式为环向失稳破坏;增加环筋数和增厚蒙皮可以增加耐压壳体的承压能力,相比于增加蒙皮厚度,增加环肋数量对压强质量比的提升更为明显;复合材料铺层的纵向弹性模量对于耐压壳体的承压能力影响显著;由于复合材料生产过程中难以避免的初始缺陷,环肋加筋复合材料耐压壳体的爆破压强应在有限元解基础上进行修正,根据本文试验结果,修正系数建议取值范围为0.5~0.7.
Design and Examination of A Deep See Pressure Hull with High Modulus CFRP
Theoretical calculations for kilometer-scale deep-sea pressure-resistant composite cylinders were conducted.Based on thickness of cylinder pressure hull,a ring-stiffened cylinder pressure hull was optimal de-signed.Structure stability and strength of thousand meter class composite pressure hull was analyzed by finite ele-ment method.Finally the composite pressure hull was examined by hydrostatic pressure test.It is shown that main failure modes of ring-stiffened composite pressure hull is buckling;adding number of ring-ribs and thickness of cylinder both develop stability of pressure hull,adding number of ring-ribs is more effective than adding thickness of cylinder,compress modulus of CFRP plate have a great influence on stability of pressure hull;break pressure of ring-stiffened cylinder pressure hull shall be fixed because of initial fault in CFRP building,the fix ratio shall be in a range of 0.5-0.7 according to examination.

stiffened cylinder shellpressure hullbuckling stabilityfinite element analysis

姚嘉、刘勇琼、王鹏、廖英强、孟玲宇、吴姜炎、景宽

展开 >

西安航天复合材料研究所,西安 710025

航天动力技术研究院,西安 710025

加筋圆柱壳 耐压壳体 屈曲稳定性 有限元分析

2024

高科技纤维与应用
北京华腾东光科技发展有限公司 全国特种合成纤维信息中心

高科技纤维与应用

CSTPCD
影响因子:0.571
ISSN:1007-9815
年,卷(期):2024.49(4)