首页|All-optical image denoising using a diffractive visual processor
All-optical image denoising using a diffractive visual processor
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
国家科技期刊平台
NETL
NSTL
万方数据
Image denoising,one of the essential inverse problems,targets to remove noise/artifacts from input images.In general,digital image denoising algorithms,executed on computers,present latency due to several iterations implemented in,e.g.,graphics processing units(GPUs).While deep learning-enabled methods can operate non-iteratively,they also introduce latency and impose a significant computational burden,leading to increased power consumption.Here,we introduce an analog diffractive image denoiser to all-optically and non-iteratively clean various forms of noise and artifacts from input images-implemented at the speed of light propagation within a thin diffractive visual processor that axially spans<250 xλ,where λ is the wavelength of light.This all-optical image denoiser comprises passive transmissive layers optimized using deep learning to physically scatter the optical modes that represent various noise features,causing them to miss the output image Field-of-View(FoV)while retaining the object features of interest.Our results show that these diffractive denoisers can efficiently remove salt and pepper noise and image rendering-related spatial artifacts from input phase or intensity images while achieving an output power efficiency of~30-40%.We experimentally demonstrated the effectiveness of this analog denoiser architecture using a 3D-printed diffractive visual processor operating at the terahertz spectrum.Owing to their speed,power-efficiency,and minimal computational overhead,all-optical diffractive denoisers can be transformative for various image display and projection systems,including,e.g.,holographic displays.