首页|面向集卡防吊起的车轮目标检测算法改进研究

面向集卡防吊起的车轮目标检测算法改进研究

扫码查看
为防止集装箱卡车卸箱作业过程中与集装箱一同被吊起的安全隐患,需要对其作业过程中的位置状态进行准确的识别.以集卡车轮作为目标检测的特征提取对象,利用神经网络中YOLOv5 算法作为基础算法,并针对算法中的特征提取能力不足、特征联系程度不强、场景应用能力不足的缺陷,给出融合结构重参数、自适应加权金字塔、检测头剪枝 3 种改进措施.实验结果表明,改进算法可提高模型的目标检测性能.
Research on the Improvement of Wheel Target Detection Algorithm for Anti Lifting of Container Trucks
In order to prevent safety hazards caused by container trucks being lifted together with containers during unloading operations,it is necessary to accurately identify the position and status of the container trucks during the operation.The feature extraction object for target detection is the collection truck wheel,and the YOLOv5s algorithm in neural networks is used as the basic algorithm.To address the shortcomings of insufficient feature extraction ability,weak feature connection,and limited scene application ability in the algorithm,three improvement measures are proposed:fusion structure heavy parameters,adaptive weighted pyramid,and detection head pruning.The experimental results indicate that improving the algorithm can enhance the object detection performance of the model.

anti liftingtarget detectionYOLOv5s algorithm

钟晓晖、董明望

展开 >

宁波北仑第三集装箱码头有限公司

武汉理工大学交通与物流工程学院

防吊起 目标检测 YOLOv5s算法

2024

港口装卸
武汉理工大学 中国工程机械学会港口机械分会

港口装卸

影响因子:0.186
ISSN:1000-8969
年,卷(期):2024.(5)