首页|基于优化VMD的起重机滚动轴承剩余使用寿命预测

基于优化VMD的起重机滚动轴承剩余使用寿命预测

扫码查看
滚动轴承作为起重机设备回转机构关键零部件,其健康状态直接影响起重机设备安全.由于起重机设备工况复杂,传感器收集的振动信号易受噪声干扰,影响特征提取的准确性.为提升滚动轴承剩余使用寿命的预测精度,提出一种融合变分模态分解和堆栈门控循环神经网络的预测模型.利用霜冰优化算法优化变分模态分解,有效分解原始振动信号;通过最大互信息系数筛选出最优的固有模态函数分量,实现信号的精确重构;从重构信号中提取关键退化特征,并进行特征降维;将降维后的特征输入至堆栈门控循环单元网络,以预测轴承的剩余使用寿命.使用PRONOSTIA标准数据集对所提出的模型进行验证,实验结果表明,该模型能从降噪信号中有效地提取退化特征,显著提高预测精度.
Remaining Useful Life Prediction of Crane Rolling Bearings Based on RMS Trend Consistency
As a key component of crane equipment rotating mechanism,the health status of rolling bearings will directly affect the safety of crane equipment.Due to the crane operation in harsh environment,often lead to sensor collected vibration signal contains a lot of noise,which seriously interfere with the accuracy of feature extraction.In order to improve the prediction accuracy of rolling bearing remaining useful life(RUL),a prediction model combining variational mode decomposition(VMD)and stack-gated recurrent neural network(SGRU),namely VMD-SGRU model,was proposed in this thesis.First,the VMD is optimized by rime optimization algorithm(RIME)to decompose the original vibration signal effectively.Then,the optimal intrinsic mode function(IMF)component is selected by the maximum mutual information coefficient(MIC)to accomplish accurate signal reconstruction.On this basis,the key degradation features are extracted from the reconstructed signals,and the feature dimension is reduced by principal component analysis(PCA).Finally,the dimensionally reduced features are fed into the stack-gated cycle unit(SGRU)network to predict the RUL of the bearing.In this study,the VMD-SGRU model was validated using PRONOSTIA standard dataset.The experimental results show that the model can effectively extract the degraded features from the denoised signals and take them as the input of SGRU network,which significantly improves the prediction accuracy.

cranerolling bearingsrime optimization algorithmvariational mode decompositionremaining useful life prediction

杨仲、李帅琦、王贡献

展开 >

武汉开锐海洋起重技术有限公司

武汉理工大学交通与物流工程学院

起重机 滚动轴承 霜冰优化算法 变分模态分解 剩余使用寿命预测

2024

港口装卸
武汉理工大学 中国工程机械学会港口机械分会

港口装卸

影响因子:0.186
ISSN:1000-8969
年,卷(期):2024.(6)