首页|基于深度神经网络的国道风险评估技术研究

基于深度神经网络的国道风险评估技术研究

扫码查看
为解决在工程实际应用中,iRAP道路风险评估模型难以适应不同道路环境条件下风险评估的问题,研究收集了我国东部沿海三省部分国道道路的基础信息数据,并通过视频图像处理、人工信息编码以及专家校核的方式得到了风险评估数据集。在iRAP原有模型的体系框架的基础上,利用深度神经网络对模型权重系数进行调整更新,从而构建国道典型路段上的道路交通安全风险评估模型NNRAP。研究结果表明,NNRAP模型在多分类道路风险分级上展现出了良好的性能,在测试集上的分类准确率达到了 90。35%;在二分类道路风险分级上,NNRAP模型对于道路高风险路段的分类精度达到了 94。08%,明显优于iRAP模型的分类精度。
Research on Risk Assessment Technology of National Highway based on Deep Neural Network
In order to solve the difficulty of adapting the iRAP road risk assessment model to the risk assessment under different road environment conditions in the practical application of engineering,the basic information data of some national highway roads in the three eastern coastal provinces of China are collected,and a risk assessment dataset is obtained by video image processing,manual information coding and expert calibration.On the basis of the systematic framework of the original model of iRAP,the deep neural network is used to adjust and update the weight coefficients of the model,so as to construct the road traffic safety risk assessment model NNRAP on the typical road sections of national highways.The results show that the NNRAP model exhibits good performance in multi-classification road risk classification,with a classification accuracy of 90.35%on the test set;and in dichotomous road risk classification,the NNRAP model achieves a classification accuracy of 94.08%for road high-risk road sections,which is significantly better than the classification accuracy of the iRAP model.

traffic engineeringroad risk assessment techniquesdeep neural networkweighting factorNNRAP model

周荣贵、杨杰

展开 >

交通运输部公路科学研究院公路交通安全技术交通运输行业重点实验室 北京市 100088

交通工程 道路风险评估技术 深度神经网络 权重系数 NNRAP模型

国家重点研发计划资助

2021YFC3001505

2024

公路
中国交通建设集团有限公司

公路

CSTPCD北大核心
影响因子:0.54
ISSN:0451-0712
年,卷(期):2024.69(6)
  • 3