首页|基于DE-INSGA-Ⅱ的联合循环系统性能及参数优化研究

基于DE-INSGA-Ⅱ的联合循环系统性能及参数优化研究

扫码查看
为了研究联合循环系统长期运行后循环效率最优的热力参数匹配,提出了一种改进优化算法,该算法融合了非线性优化思想,并利用DE(differential evolution algorithm)算法思想改善种群初始分布,同时改进快速非支配排序遗传算法 NSGA-Ⅱ(non-dominated sorting genetic algorithm)交叉算子.以底循环效率最大为目标函数结合约束条件,对系统的热力参数匹配进行多目标优化.仿真结果表明:所提的 DE-INSGA-Ⅱ算法具有良好分布性和收敛性,搜索能力更强.在底循环效率优化问题上,较传统 NSGA-Ⅱ算法提高 0.44%,余热锅炉效率提高了 0.86%,汽轮机效率提升了 0.15%.该研究为联合循环机组运行的热力参数匹配提供了新的参考.
Research on Performance and Parameter Optimization of Combined Circulation System Based on DE-INSGA-Ⅱ
In order to study the matching of thermal parameters with optimal cycle efficiency after long-term operation of the combined cycle system,an improved optimization algorithm is proposed,which integrates the idea of nonlinear optimization and uses the idea of DE(differential evolution)algorithm to improve the initial distribution of the population,and at the same time improves the non-dominated sorting genetic algorithm(NSGA-Ⅱ)cross operator.Taking the maximum bottom cycle efficiency as the objective function and the constraint condition,the multi-objective optimization of the thermal parameter matching of the system is carried out.The simulation results show that the proposed DE-INSGA-Ⅱ(differential evolution algorithm-improved NSGA-Ⅱ)algorithm has good distribution,convergence and strong search ability.Compared with the traditional NSGA-Ⅱ algorithm,the bottom cycle efficiency is increased by 0.44%,the efficiency of heat recovery steam generator is increased by 0.86%,and the efficiency of the steam turbine is increased by 0.15%.This study provides a new reference for the operation of combined cycle units in the subsequent thermal parameter matching process.

bottom cycle efficiencymulti-objective optimizationimproved NSGA-Ⅱcombined cycle unitsthermal parameters

陈永军、黄伟

展开 >

上海电力大学 自动化工程学院,上海 200090

底循环效率 多目标优化 改进NSGA-Ⅱ 联合循环机组 热力参数

上海市科技创新行动计划地方院校能力建设专项中国华能集团有限公司重点科技项目

19020500700CHDKJ19-01-80

2024

锅炉技术
上海锅炉厂有限公司

锅炉技术

北大核心
影响因子:0.409
ISSN:1672-4763
年,卷(期):2024.55(1)
  • 19