首页|基于能量场的城市道路车辆交互强度研究

基于能量场的城市道路车辆交互强度研究

扫码查看
由于交通环境的复杂性、车辆之间的交互多变性,无人驾驶的行为决策研究一直存在应用灵活性较差、精度不高的瓶颈.因此,以探究车辆之间的交互机理为目标,深入研究车流运行的微观规律,为无人驾驶的行为决策研究提供理论依据.首先,基于能量场的物理性质,将车辆类比于引力场中的场源,建立车辆的行车交互场模型,并依据能量场中的质量和车辆物理特性定义了交互虚拟质量,例如速度、加速度、车型.采用行车交互力模型量化车辆之间的交互程度,依据临界车头间距与多普勒效应分别重新定义交通环境中的距离和速度.其次,利用实车在上海浦东新区同顺大道采集速度、相对距离等相关数据,通过视频处理软件Kinovea提取行车记录仪中的数据,采用高斯混合模型验证行车交互力与实际驾驶行为之间的关系.最后,通过K-means算法对行车交互力聚类分析,量化车辆行驶风险等级.结果表明:通过高斯混合模型计算出的跟驰、换道分类结果与实际分类结果的误差分别为 1.12%和9.1%,说明行车交互力对车辆交互的量化描述能力较好;同时,在行车交互力模型的基础上将行车风险分为 4级,有效评估了行车风险.本研究提出的行车交互力模型不仅可以拓展以往行车安全场的应用范围,也为驾驶行为决策研究提供一定的理论支撑.
Study on Vehicle Interaction Strength on Urban Road Based on Energy Field
Due to the complexity of traffic environment and the interaction among vehicles,there are some bottlenecks about poor application flexibility and low precision in the study on autonomous driving decision-making behavior.Therefore,taking interaction exploration among vehicles as an object,in-depth studying the micro-law of vehicle flow operation,and provideding theoretical basis for the study on autonomous driving decision-making behavior.Firstly,based on the physical properties of the energy field,such as speed,acceleration and car type,the vehicle is analogized to the field source in the gravitational field,and the vehicle interaction field model is established.The interaction among vehicles is quantified by using the vehicle-vehicle interaction model,and the distance and speed in traffic environment are redefined according to the critical space headway and Doppler effect.Secondly,the data of speed and relative distance are collected by the real vehicle on Tongshun boulevard in Shanghai Pudong,and the data in the event data recorder are extracted by video processing software Kinovea,and Gauss mixture model is used to test the relationship between driving interaction and actual driving behavior.Finally,the driving interaction force is analyzed by K-means algorithm,and the driving risk grade is quantified.The result shows that(1)the errors between the car-following and lane-changing results calculated by Gaussian mixture model and the actual results are 1.12%and 9.1%respectively,indicating that the driving interaction force has a good ability to describe the vehicle interaction quantitatively;(2)at the same time,the driving risk is divided into 4 levels based on the driving interaction force model,and the driving risk is effectively evaluated.The proposed driving interaction force model can not only expand the application of previous driving safety field,but also provide theoretical support for driving behavior decision-making study.

ITSdriving interactionenergy fielddriving riskcritical space headwayGaussian mixture model

周贝妮、韩皓、李易

展开 >

上海海事大学 物流研究中心,上海 201306

上海海事大学 物流工程学院,上海 201306

智能交通 行车交互 能量场 行车风险 临界车头间距 高斯混合模型

国家自然科学基金

52202419

2024

公路交通科技
交通运输部公路科学研究院

公路交通科技

CSTPCD北大核心
影响因子:1.007
ISSN:1002-0268
年,卷(期):2024.41(2)
  • 28