首页|数据驱动下小型纯电动汽车充电策略研究

数据驱动下小型纯电动汽车充电策略研究

扫码查看
随着能源危机和环境污染的日益加剧,电动汽车凭借自身低碳环保的特性使得纯电动汽车市场得到广泛关注并迅速扩张.然而,有限的电池容量、多样化的出行需求、充电设施的服务与需求不匹配等诸多问题逐渐成为电动汽车发展的瓶颈问题.考虑用户日常出行需求,优化电动汽车的续驶里程是解决这一问题的可行途径之一.通过对驾驶和充电行为进行建模,提出了一种用于电池电动汽车(BEV)最佳行驶里程的仿真方法.BEV用户的驾驶和充电模式是通过从中国上海收集的实际数据来重构日常出行链.同时,在日常出行链中定义了日常出行和每次出行的相互依赖的行为变量.为满足练习场的适应度目标,采用蒙特卡罗方法建立了一个随机模拟框架.最后,在考虑用户异质性的情况下,分析了不同充电场景下的最优续航里程.结果表明:通过每日出行和每次出行的行为变量可以重构每日出行链,Copula函数检测的变量之间存在相关性;不同日常出行需求的用户有不同的最优续航里程;在选择纯电动汽车时,建议用户考虑每天行驶的车辆公里数不超过电池续航里程的 34%;增加充电次数和充电功率更有利于日常出行需求高的用户;在满足出行需求的前提下,增加快充功率的有益效果将逐渐减弱.
Study on Charging Strategy of Light-duty BEV Driven by Data
With the increasing energy crisis and environmental pollution,electric vehicles have attracted wide attention and expanded rapidly in the market due to their low-carbon and environmentally friendly characteristics.However,many problems such as limited battery capacity,diversified travel demand and mismatch between service and demand of charging facilities have gradually become the bottleneck of the development of electric vehicles.Considering the daily travel needs of users and optimizing the driving range of electric vehicles is one of the feasible ways to solve the problems.A simulation method for the optimal mileage of battery electric vehicle(BEV)is proposed by modeling driving and charging behaviors.The driving and charging modes of BEV users are characterized by reconstructing daily travel chains based on actual data collected from Shanghai,China.Simultaneously,the interdependent behavior variables of daily travel and each travel are defined in the daily travel chain.In order to meet the fitness goal of the exercise field,a random simulation framework is established with Monte Carlo method.Finally,considering the heterogeneity of users,the optimal mileage with different charging scenarios is analyzed.The result shows that the daily travel chain can be reconstructed by using the behavioral variables of daily travel and each travel,and there is a correlation among the variables detected by the Copula function.Users with different daily travel needs have different optimal mileage,when choosing a BEV,users are recommended to consider that the number of vehicle kilometers per day is less than 34%of the battery endurance mileage.Increasing charging opportunities and charging power is more conducive to drivers with high daily travel demand.Under the premise of meeting travel demand,the beneficial effect of increasing fast charging power will gradually weaken.

automotive engineeringdriving and charging strategiesdata-driven simulationdaily itinerary chainBEV

李美洲、陈辰、倪洪飞、王一博

展开 >

中铁十九局集团矿业投资有限公司, 北京 100070

清华大学 苏州汽车研究院, 江苏 苏州 215000

汽车工程 驾驶和充电策略 数据驱动仿真 每日行程链 纯电动汽车

国家自然科学基金项目

62273085

2024

公路交通科技
交通运输部公路科学研究院

公路交通科技

CSTPCD北大核心
影响因子:1.007
ISSN:1002-0268
年,卷(期):2024.41(3)
  • 23