首页|基于优化多维支持向量机回归模型的土体参数反演

基于优化多维支持向量机回归模型的土体参数反演

扫码查看
针对如何有效提高位移监测数据反演土体参数精度的问题,提出一种基于麻雀搜索算法优化多维支持向量机回归模型的土体参数反演方法.依托黄土区超深路堑边坡工程项目,采用有限差分软件FLAC3D建立边坡二维模型,并利用正交试验进行土体参数的多因素敏感性分析以确定待反演参数.然后建立符合实际开挖情况的边坡三维开挖模型,计算不同反演参数下的模拟位移值以获得训练数据.利用麻雀搜索算法获得多维支持向量机回归模型的最优参数从而构建SSA-MSVR模型,使用训练数据训练优化模型.最后,将实际监测位移代入训练好的模型求得土体最优反演参数并分析验证反演参数的正确性.结果表明:影响边坡稳定性系数的土体参数敏感性排序前 4 位为老黄土的内摩擦角、红黏土的内摩擦角、老黄土的黏聚力和老黄土的弹性模量,确定了这 4 个参数为待反演参数;超深路堑边坡开挖完成后,边坡顶部产生沉降位移,而底部出现卸荷回弹现象;利用反演参数计算的位移模拟值与实际监测值相对误差均小于 10%,证明SSA-MSVR模型应用于土体参数反演效果较好,为参数反演提供了新的思路和方法.
Inversion of Soil Parameters Based on Optimized Multidimensional Support Vector Regression Model
To improve the accuracy of soil parameter inversion from displacement monitoring data,a method based on optimized multidimensional support vector regression model for soil parameter inversion is proposed.Taking the ultra-deep cutting slope project in loess region for an example,a two-dimensional slope model is established by using the finite difference software FLAC3D.An orthogonal experiment is conducted to analyze the multi-factor sensitivity of soil parameters,and determine the parameters to be inverted.Then,the three-dimensional excavation model of slope is established to reflect real excavation conditions.The simulated displacement values with different inversion parameters are calculated to obtain the training data.The optimal parameters of multidimensional support vector regression model are obtained by using the sparrow search algorithm to construct SSA-MSVR model,and the optimized model is trained by using the training data.Finally,the actual monitoring displacements are inputted into the trained model to obtain optimal inversion parameters.The correctness of inverted parameters are verified through forward analysis.The result indicates that the top 4 soil parameters in terms of sensitivity to slope stability coefficient are the internal friction angle of old loess,the internal friction angle of red clay,the cohesive force of old loess,and the elastic modulus of old loess.These 4 parameters are determined as the parameters to be inverted.When the excavation of ultra-deep cutting slope is completed,the settlement displacement occurs at the top of slope,while unloading rebound deformation appears at the bottom of slope.The relative errors between the displacement simulated values calculated with the inverted parameters and the actual monitoring values are all less than 10%,which proves that the SSA-MSVR model yields good results when applied to the inversion of soil parameters.It provides new ideas and methods for parameter inversion.

road engineeringparameter inversionsparrow search algorithmmultidimensional support vector regressionsensitivity analysisloess slope

李向海、杨玲、魏静

展开 >

中国铁建投资集团有限公司,广东 珠海 519000

北京交通大学 土木建筑工程学院,北京 100044

道路工程 参数反演 麻雀搜索算法 多维支持向量机回归 敏感性分析 黄土边坡

中国铁建投资集团科技研发计划

2020-C10

2024

公路交通科技
交通运输部公路科学研究院

公路交通科技

CSTPCD北大核心
影响因子:1.007
ISSN:1002-0268
年,卷(期):2024.41(5)
  • 18