首页|不同降雨强度环境下高速公路跟驰模型标定

不同降雨强度环境下高速公路跟驰模型标定

扫码查看
为了标定不同降雨环境下高速公路跟驰模型,通过实地试验探究了不同降雨强度下驾驶员跟驰行为特性,基于遗传算法对跟驰模型进行标定,并采用交叉验证方式对标定参数进行验证.首先,通过实地试验收集了正常、小雨、中雨及大雨条件下的交通流数据,根据车头时距和车头间距筛选跟驰事件;其次,分析了不同降雨强度下驾驶员跟驰行为的变异性,探究了不同降雨强度下的车头间距和跟驰速度的关系;最后,利用遗传算法对 GHR 模型、FVD 模型以及 IDM 模型参数进行了标定,并采用交叉验证检验了模型精度.结果显示,降雨强度对高速公路的车辆跟驰行为有显著影响.降雨强度越大,驾驶员倾向于保持更大的车头间距和更低的跟驰速度.大雨天气与正常天气相比,跟驰速度相同时的平均跟驰间距增加 30 m以上,跟驰间距相同时的平均跟驰速度降低 10 km·h―1 以上.标定结果进一步显示,随着降雨强度的增加,跟驰模型中体现驾驶员敏感程度的参数逐渐增加,反映驾驶行为或期望驾驶行为的参数呈现向更加保守方向变化的趋势.交叉验证分析还表明,与GHR 模型和FVD 模型相比,IDM模型更能有效反映不同降雨强度对驾驶员跟驰行为的影响.
Calibration on Expressway Car-following Model with Various Rainfall Intensities
To calibrate the expressway car-following model with various rainfall intensity,the characteristics of drivers'car-following behavior with various rainfall intensities were explored through field tests.The car-following model was calibrated based on the genetic algorithm.The calibration parameters were verified by using cross-validation.Firstly,the traffic flow data under normal,light rain,moderate rain,and heavy rain conditions were collected through field experiments.The car-following events were screened based on the headway and inter-vehicle distance.Secondly,the variability of drivers'following behavior with different rainfall intensities was analyzed.The relation between headway and following speed with different rainfall intensities was explored.Finally,the genetic algorithm was used to calibrate the parameters of GHR model,FVD model,and IDM model.The cross-validation was used to test the accuracy of models.The result indicates that there is a significant influence of rainfall intensity on expressway car-following behavior.As rainfall intensity increases,the drivers tend to maintain larger headway and lower car-following speed.Compared with normal weather condition,the average car-following distance increases by more than 30 m at the same car-following speed under heavy rain condition,while the average car-following speed decreases by more than 10 km/h at the same headway.The validation analysis further shows that the parameters of driver sensitivity in car-following model increase gradually with the increase of rainfall intensity.That reflects a tendency for the parameters of driving behavior or expected driving behavior to change in a more conservative direction.The cross-validation analysis also shows that compared with GHR model and FVD model,the IDM model accurately reflects the influence of different rainfall intensities on car-following behavior.

ITScar-following modelgenetic algorithmexpresswayrainfall intensity

单华刚、于长海、许金良、高超、尧玉宏

展开 >

绍兴市交通投资集团有限公司,浙江 绍兴 312000

长安大学 特殊地区公路工程教育部重点实验室,陕西 西安 710064

智能交通 跟驰模型 遗传算法 高速公路 降雨强度

浙江省交通运输厅科研计划项目

2020025

2024

公路交通科技
交通运输部公路科学研究院

公路交通科技

CSTPCD北大核心
影响因子:1.007
ISSN:1002-0268
年,卷(期):2024.41(6)
  • 7