首页|基于DCGAN预处理和残差密集注意力网络的路面裂缝识别方法

基于DCGAN预处理和残差密集注意力网络的路面裂缝识别方法

扫码查看
为了建立一种基于深度学习卷积神经网络(DCGAN)的路面裂缝检测模型,提高特殊路面裂缝(如模糊裂缝、浅裂缝等)的识别准确率,提出了基于DCGAN预处理和残差密集注意力网络(RDAN)的路面裂缝识别方法.该方法基于对抗学习的思想,在数据预处理中保留了高分辨率的裂缝特征,同时抑制背景噪声的影响,将模糊裂缝增强为清晰裂缝,将浅色裂缝重建为深色裂缝,提升模型训练、识别效果;在模型训练中,提出了一种全新的适用于路面裂缝识别的RDAN;基于传统的残差网络和密集网络的结构进行融合改进,在元素维度和通道维度同步进行层与层之间特征的传递,改善深度卷积神经网络训练过程中的退化问题;通过引入卷积块注意力模块,在空间与通道2个维度实现自适应特征优化,进一步提升网络在实际复杂路面背景下的裂缝特征提取能力,抑制背景噪声的干扰.结果表明:基于DCGAN预处理和RDAN的路面裂缝识别方法在CiCS50000实际工程数据集及多个公开数据集上取得了最优的识别效果,在CiCS50000数据集准确率、精确率、召回率和Dice相似系数上分别达到了 97.51%,87.05%,83.36%和 81.02.
Pavement Crack Recognition Method Based on DCGAN Preprocessing and Residual Dense Attention Network
To establish a type of pavement crack detection model based on deep learning convolutional neural network for improving the recognition accuracy for special pavement cracks(e.g.,fuzzy crack and light-colored crack),the pavement crack detection method based on deep convolution generative adversarial network(DCGAN)preprocessing and residual dense attention network(RD AN)was proposed.In the data preprocessing module,guided by the adversarial learning concept,the method preserves high-resolution crack features while suppressing the influence of background noise.The fuzzy cracks can be enhanced to clear cracks.The light-colored cracks can be reconstructed to dark cracks.The training and recognition effect of subsequent models can be improved.In the model training module,a wholly new RDAN for pavement crack recognition was proposed,which was developed through the fusion and improvement of traditional ResNet and DenseNet structures.The layer-to-layer characteristics transfer was synchronized between the element dimension and channel dimension to improve the degradation problem during training of deep convolutional neural networks.The adaptive feature optimization was realized in 2 dimensions of space and channel by introducing the convolutional block attention module to further improve the crack feature extraction ability and suppress the background noise interference in the actual complex road background.The result indicates that the pavement crack recognition method based on DCGAN preprocessing and residual dense attention network has achieved the optimal recognition effect on the CiCS50000 real engineering dataset and multiple public datasets.The accuracy,precision,recall rate and Dice coefficient of the CiCS50000 dataset reach 97.51%,87.05%,83.36%,81.02 respectively.

intelligent transportcrack recognition methodgenerative adversarial networkresidual dense connectionattention mechanism

王强、王浩仰、高保全、付渊、陈煜东

展开 >

山西省交通规划勘察设计院有限公司,山西 太原 030032

中公高科养护科技股份有限公司,北京 100095

交通运输部公路科学研究院,北京 100088

公路与桥梁高效养护及安全耐久国家工程研究中心,北京 100088

山西省交通运输厅,山西 太原 030031

山西省公路局,山西 太原 030032

北京邮电大学 网络空间安全学院,北京 100876

展开 >

智能交通 裂缝识别方法 生成对抗网络 残差密集连接 注意力机制

2024

公路交通科技
交通运输部公路科学研究院

公路交通科技

CSTPCD北大核心
影响因子:1.007
ISSN:1002-0268
年,卷(期):2024.41(8)