首页|基于时空关系的多细粒度隧道交通流预测模型研究与应用

基于时空关系的多细粒度隧道交通流预测模型研究与应用

扫码查看
隧道交通流预测是隧道交通预警管控中十分重要的环节.由于现实问题中通常会根据存在时空关系的多个变量进行不同细粒度的交通流预测,因此使用多元变量来准确预测不同时间细粒度的交通流具有挑战性.现有方法通常基于单元时间变量捕获拟合时序映射关系,或在多元序列数据中提升特征提取能力,进行单一尺度的预测.这些方法缺乏捕捉多元变量间时空关系的能力,并且在多元变量处理和细粒度特征提取方面存在不足,无法充分应对复杂交通环境中的时空关系,导致预测效果不佳.为了解决以上问题,提出了一种基于时空关系的多细粒度隧道交通流量预测模型,包含多细粒度融合预测模块和时空关系特征提取模块.多细粒度融合预测模块用于融合多元变量,提取不同时间尺度下的细粒度特征,从而确保模型适应复杂多变的交通环境.随后,时空关系特征提取模块进一步处理这些特征,捕捉变量之间的时空依赖关系,从而实现对交通流量变化趋势的精确预测.该模型结合了时空关系和多细粒度特征提取的优势,能够有效应对不同时间尺度下的交通流预测需求.该模型在 3 个交通流数据集中进行对比试验(PEMS4、PEMS8、中国隧道交通流数据),结果表明本研究提出的方法在时序预测任务尤其是多细粒度的隧道交通流预测中有着较好表现.
Study and Application of Multi Fine-grained Tunnel Traffic Flow Prediction Model Based on Spatio-temporal Relation
The tunnel traffic flow prediction is an important link in tunnel traffic early warning and control.In practice,the different fine-grained traffic flow predictions are usually performed based on the multiple variables with spatio-temporal relation.Therefore,it is challenging to use multi-source variables to accurately predict the fine-grained traffic flows at different times.It is usually to capture and fit time series mapping relation with the existing methods based on the single-source time variables,or improve the feature extraction capabilities in multi-source sequence data for single-scale prediction.These methods lack the ability to capture spatio-temporal relation among multi-source variables,and there are deficiencies in multivariate processing and fine-grained feature extraction.That leads to an inability to fully address the spatio-temporal relation in complex traffic environments,resulting in poor prediction performance.To solve these problems,based on the spatio-temporal relation,the multi fine-grained tunnel traffic flow prediction model,including multi fine-grained fusion prediction module and spatio-temporal relation feature extraction module,was proposed.The multi fine-grained fusion prediction module was used to fuse multiple variables,and extract the fine-grained features at different time scales,thus ensuring the model adapt to complex and changing traffic environments.Subsequently,the spatio-temporal relation feature extraction module further processed these features to capture the spatio-temporal dependencies among variables,thereby achieving the accurately prediction on traffic flow trends.The proposed model combined the advantages of spatio-temporal relation and multi fine-grained feature extraction.It can effectively meet the needs of traffic flow prediction at different time scales.The model was compared in 3 traffic flow data sets(PEMS4,PEMS8,and China tunnel traffic flow data).The result indicates that the proposed method performs well in the time series prediction tasks,especially in multi fine-grained tunnel traffic flow prediction.

intelligent transporttraffic flow predictionspatio-temporal relationmulti fine-grained tunnel traffic flowself-attention mechanism

王九胜、许辉、缪中岩

展开 >

甘肃省公路事业发展中心,甘肃 兰州 730030

云上甘肃科技股份有限公司,甘肃 兰州 730087

智能交通 交通流预测 时空关系 多细粒度隧道交通流 自注意力机制

2024

公路交通科技
交通运输部公路科学研究院

公路交通科技

CSTPCD北大核心
影响因子:1.007
ISSN:1002-0268
年,卷(期):2024.41(11)