首页|基于机器学习的梁片预制质量评价模型——以梁片混凝土强度为例

基于机器学习的梁片预制质量评价模型——以梁片混凝土强度为例

扫码查看
针对现行公路桥梁梁片预制质量评价存在的评价指标不够全面、质量差异无法有效体现及过程控制指标精度缺乏等问题,提出了一种基于机器学习的梁片预制过程质量评价方法.通过对梁片预制的混凝土试块、混凝土拌和、浇注振捣、钢筋试验、梁片蒸养、智能张拉压浆等关键工序控制的物联网数据采集,并对所采集的数据进行归一化处理、过滤异常值及离群数据,实现数据降噪处理,采用皮尔逊相关性分析算法,建立相关性分析矩阵图,找出关键工序控制偏差对梁片质量影响的强相关因子,实现数据降维处理,为机器学习提供优质降噪数据.通过对处理后的梁片样本数据采用线性回归、决策树回归和XGBoost等多种机器学习算法建立梁片质量评价模型,并采用均方根误差、平均绝对百分比误差率对所建立的梁片质量模型进行定量评价,找出最优的梁片质量评价模型,以此进行梁片质量评价.以梁片混凝土强度为例,测试验证结果显示,XGBoost模型在预测梁片混凝土强度方面的平均绝对百分比误差率为 1.87%,低于目前行业内采用的回弹法无损检测的 3.59%误差值.该方法不仅能精准评估成品梁片的混凝土强度质量,还能识别影响梁片预制质量的关键工序和指标,实现对这些关键环节的精准控制,并能有效精准识别梁片质量检测的人为造假情况,促进梁片预制质量的均质化提升.
Prefabricated Bridge Beam Quality Evaluation Model Based on Machine Learning:Taking Beam Concrete Strength for an Example
To address the issues of incomplete evaluation criteria,ineffective reflection of quality differences,and lack of process control indicators in the current quality evaluation on prefabricated highway bridge beams,this paper proposed the quality evaluation method for bridge beam prefabrication process based on the machine learning.IoT data from key process controls(e.g.,concrete test blocks,concrete mixing,pouring and vibration,rebar testing,beam steam curing,and intelligent tensioning and grouting)were collected.The collected data were normalized,then filtering out anomalies and outliers,and achieving data denoising.Pearson correlation analysis algorithm was used to establish the correlation analysis matrix diagrams.The strongly correlated factors influencing beam quality by key process control deviations were identified.The data dimensionality reduction was achieved,providing the high-quality denoised data for machine learning.The various machine learning algorithms(e.g.,linear regression,decision tree regression,and XGBoost)were used to establish the beam quality evaluation models with the processed data.The established models were quantitatively evaluated by using RMSE and MAPE.The optimal beam quality evaluation model was identified for quality evaluation.The beam concrete strength was taken for an example.The test result indicates that XGBoost model achieves MAPE of 1.87%in predicting the beam concrete strength,significantly lower than the 3.59%error rate of the rebound method currently used in the industry.The proposed method not only accurately evaluates the concrete strength quality of finished beams,but also identifies the key processes and indicators affecting the beam prefabrication quality.That enables the precise control on these key links.Furthermore,it can effectively and accurately detect the instances of human fraud in beam quality testing,and promote the overall homogenization and improvement of prefabricated beam quality.

bridge engineeringbeam quality evaluationmachine learningquality evaluation modelbeam quality inspection

李潘炡

展开 >

福建省高速公路信息科技有限公司,福建 福州 350007

桥梁工程 梁片质量评价 机器学习 质量评价模型 梁片质量检测

2024

公路交通科技
交通运输部公路科学研究院

公路交通科技

CSTPCD北大核心
影响因子:1.007
ISSN:1002-0268
年,卷(期):2024.41(12)