首页|突发公共卫生事件下的在线社交媒体公众情绪挖掘

突发公共卫生事件下的在线社交媒体公众情绪挖掘

扫码查看
在线社交媒体是突发公共卫生事件中传播信息和表达情感的重要渠道,洞察公众对新闻的情绪反应可以帮助公共卫生部门制定有效的风险沟通策略.本研究应用自然语言处理方法,对在线社交媒体新闻进行内容分类,并识别公众评论所表达的情绪,提出了适用于突发公共卫生事件的在线社交媒体公众情绪挖掘方法.具体而言,本文以新冠疫情为案例,以微博平台为数据载体,分析三个具有代表性的官方媒体微博账号中有关疫情的新闻,识别出了 8类内容,包括官方新闻发布、国内疫情进展、情感支持、新冠肺炎诊疗信息等.本文基于普拉切克(Plutchik)情绪框架,通过众包问卷和情绪词典构建了用户评论情绪的判别模型,进一步分析了不同新闻内容在疫情生命周期各阶段(发作期、遏制期、恢复期)对公众情绪的影响.研究发现,通过强调特定类型的风险信息可以调节公众情绪、提高公众风险意识,为风险沟通策略分析提供了实证基础.
Online Social Media Public Emotions Mining during a Public Health Emergency
Online social media is a critical channel for regulators to disseminate information and for the public to express feelings during public health emergencies.Understanding public's emotions in response to different news can help the public health department develop effective risk communication strategies.This study applies natural language processing methods to categorize social media news,and identify public emotions expressed in the corresponding news comments by proposing a method for mining public emotions on online social media during public health emergencies.Specifically,taking the recent COVID-19 pandemic as a case,this study adopts word embed-ding and clustering to analyze the epidemic-related news from three representative official Weibo accounts,and identifies eight categories of the news contents,including official news release,domestic epidemic updates,emotional support,transportation notification for track-ing,treatment information,etc.Based on the Plutchick's emotion framework,this study builds a discriminant model to classify and rate emotions expressed by a Weibo comment through crowdsourcing questionnaires and an emotion dictionary.Furthermore,this study analy-zes the impact of different news contents on public emotions and the correlation between emotions during different stages of the epidemic life cycle(the prodromal,outbreak,containment,and recovery stages).The study reveals the effectiveness of emphasizing certain risk information to nudge public emotions and increase risk awareness,providing empirical basis for risk communication strategy analysis.

public health emergencyonline social medianews content categorizationemotion identificationrisk communication

宋慎铭、王琛、詹东远

展开 >

中国航空研究院,北京 100012

清华大学工业工程系,北京 100084

伦敦大学学院管理学院,伦敦E145AA

突发公共卫生事件 在线社交媒体 新闻内容分类 情绪识别 风险沟通

国家自然科学基金重大项目国家自然科学基金面上项目

7219282471871128

2024

管理评论
中国科学院研究生院

管理评论

CSTPCDCSSCICHSSCD北大核心
影响因子:1.801
ISSN:1003-1952
年,卷(期):2024.36(3)
  • 51