首页|智能化的"去错配"效应与全要素生产率增长

智能化的"去错配"效应与全要素生产率增长

扫码查看
传统文献从技术进步的角度讨论智能化对全要素生产率的提升作用,但是鲜有文献探讨智能化可能带来的"去错配"效应及其对全要素生产率的积极影响.本文在Hsieh和Klenow错配模型的基础上引入智能资本,将要素错配的研究拓展至三种要素的情形.研究发现,引入智能资本以后,要素市场竞争更加充分,从而降低企业间名义全要素生产率离散程度,智能化通过改善资源配置效率带来全要素生产率增长.借助广东制造业企业调查数据实证发现:①企业智能化的实施存在非随机性,规模越大、重复劳动强度明显的企业更有可能采用机器人.②通过构造匹配样本,使用PSM-DID加权估计发现,相比于不使用机器人的企业,使用机器人的企业在使用前和使用后企业间生产率离散程度显著下降,全要素生产率平均提高20.9%.③对于从不使用机器人的样本,随着行业层面机器人使用密度提高,其产出只能"被动"减少,因此,应当制定合理的公共政策帮助企业适应智能化转型.④异质性分析表明,智能化的影响在不同企业规模、不同所有制类型的企业间存在显著差异,进一步验证了本文的基本结论.
Intellectualization's Effect in Eliminating Misallocation and Promoting TFP Growth
Previous studies have regarded intellectualization as a kind of technological progress.In this paper,smart capital is introduced into Hsieh and Klenow's(2009)model,and thus we extend our research on factor misallocation to the case of three factors.We find that smart capital can promote factor market competition and reduce the dispersion degree of revenue total factor productivity(TFP).Thus,it enhances TFP by improving resource allocation efficiency.Based on the manufacturing firm survey in Guangdong,the empirical results show that:(1)robot adoption is not random.The larger scale and higher repetitive labor intensity a firm has,the more likely it is to adopt robots;(2)by constructing matching samples and using PSM-DID weighted estimation,it is found that robots are productivity-enhancing,and they raise firm-level TFP of robot-adopting firms;(3)for non-adopters,with the increase of robots use density at industry-level,their output turns out to decrease passively.Therefore,non-adopters should actively adapt to intelligent transformation;and(4)heterogeneity analysis shows that the effect of intellectualization is different among samples with different sizes and ownership.Therefore,the basic findings of this paper are further verified.

intellectualizationeliminating misallocationTFProbots

王启超、孙广生

展开 >

首都经济贸易大学经济学院,北京 100070

辽宁大学经济学院,沈阳 110136

智能化 去错配 全要素生产率 机器人

国家自然科学基金面上项目北京市教委科研一般项目

72073056SM202210038014

2024

管理评论
中国科学院研究生院

管理评论

CSTPCDCSSCICHSSCD北大核心
影响因子:1.801
ISSN:1003-1952
年,卷(期):2024.36(4)
  • 13