首页|Ag2S修饰TiO2纳米管复合电极的制备及其析氢性能研究

Ag2S修饰TiO2纳米管复合电极的制备及其析氢性能研究

扫码查看
以硫化钠和硝酸银为原料,采用了化学浴沉积法将Ag2S沉积在高度有序TiO2 纳米管(TNTs)上制备出Ag2S/TNTs析氢电极.采用扫描电子显微镜(SEM)、X射线衍射分析(XRD)、X射线光电子能谱分析(XPS)对电极进行表征,结果显示 Ag2S 颗粒均匀的沉积在 TiO2 纳米管表面,且没有破坏纳米管原有的形态结构.在0.5 mol/L H2SO4 条件下,通过线性扫描伏安法(LSV)、塔菲尔曲线(Tafel)、双电层电容和电化学阻抗谱(EIS)等电化学测试分析了不同Ag2S沉积圈数所得的复合电极的析氢性能.与 TNTs 相比,Ag2S/TNTs 显示出更优异的析氢性能.Ag2S沉积圈数为 9 圈时制备出的复合电极在 10 mA/cm2 电流密度时,过电位达到了 288.14 mV,Tafel斜率为 61.8 mV/dec,双电层电容分别为 54.7 mF/cm2,传荷内阻降低到 0.7 Ω/cm2.
Preparation and hydrogen evolution performance of Ag2S modified TiO2 nanotubes composite electrode
The Ag2S/TNTs hydrogen evolution electrode was prepared by chemical bath deposition of Ag2S on highly ordered TiO2 nanotubes(TNTs)using sodium sulfide and silver nitrate as starting materials.Scanning e-lectron microscopy(SEM),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS)were used to characterize the electrodes.The results showed that Ag2S particles were uniformly deposited on the surface of TiO2 nanotubes without destroying the original morphology and structure of the nanotubes.The hydrogen evo-lution performance of the composite electrode with different deposition cycles of Ag2S was analyzed by linear sweep voltammetry(LSV),Tafel curve,double layer capacitance analysis and electrochemical impedance spec-troscopy(EIS)at room temperature of 0.5 mol/L H2SO4.Compared with TNTs,Ag2S/TNTs showed better hydrogen evolution performance.When the number of Ag2S deposition cycles is 9,the overpotential of the prepared composite electrode reaches 288.14 mV at the current density of 10 mA/cm2,the Tafel slope is 61.8 mV/dec,the double layer capacitance is 54.7 mF/cm2,and the internal resistance of charge transfer is reduced to 0.7 Ω/cm2.

Ag2STiO2 nanotubesdepositionelectrocatalytic hydrogen evolutionelectrocatalytic complete hy-drolysis of water

刘文凯、罗洁、杨梓群、张越纯

展开 >

中南林业科技大学 材料科学与工程学院,长沙 410004

硫化银 TiO2纳米管 沉积 电催化析氢 电催化全解水

国家重点研发计划项目湖南省自然科学基金项目工信部绿色制造系统集成项目湖南省大学生创新创业训练计划项目(2022-2824)

2019YFB15038052019JJ405352016-51

2024

功能材料
重庆材料研究院 中国仪器仪表学会仪表材料学会

功能材料

CSTPCD北大核心
影响因子:0.918
ISSN:1001-9731
年,卷(期):2024.55(3)
  • 21