首页|纳米TiO2微球的制备及光催化降解气相苯特性

纳米TiO2微球的制备及光催化降解气相苯特性

扫码查看
以四氯化钛和尿素为原料,通过溶剂热法制备了纳米TiO2微球.利用XRD、FE-SEM、TEM、UV-Vis、BET测试手段对样品的组成、结构、形貌、光学性能、比表面特性进行分析,以气相苯为目标降解物,研究不同溶剂热时间所制备的微球对光催化活性的影响.结果表明,随溶剂热时间的延长,TiO2微球结构经历了实心-核壳-空心的演变过程,但均由20 nm以下的颗粒组成.此类微球的光吸收带边出现明显"蓝移"现象,且光吸收性能较P25 TiO2要高,比表面积是其3~5倍.其中溶剂热时间为6 h所制备的核壳结构微球光催化活性最佳,降解气相苯的矿化率高达93%,高于P25 TiO2近3倍,分析表明,该优异性能得益于核壳结构对光的充分反射吸收和高比表面积导致的吸附协同光催化特性.
Preparation of nano-TiO2 microspheres and photocatalytic degradation of gaseous benzene
The nano-TiO2 microspheres were prepared using TiCl4 and CON2H4 as raw materials by a simple sol-vothermal method.XRD,FESEM,TEM,UV-vis,BET methods were used to directly analyze the composi-tion,structure,morphology,optical properties and specific surface characteristics of the samples.The photo-catalytic activity of the microspheres prepared with different solvothermal time was determined by analyzing the degradation of gaseous benzene.The results show that the TiO2 microspheres have undergone a process of TiO2 solid-core,core-shell and hollow-center structure with the extension of reaction time,but they are all composed of particles below 20 nm.The light absorption band edge of the microspheres exhibits a significant"blue shift"phenomenon,the light absorption performance is higher than P25 TiO2,and the specific surface area is 3-5 times higher than that of P25 TiO2.The core-shell structure microspheres prepared by 6 h exhibit the highest photocatalytic activity,the mineralization rate of degraded gaseous benzene is as high as 93%,which is nearly three times higher than P25 TiO2.The excellent performance may ascribe to the sufficient reflection and absorp-tion of light by the core-shell structure,and the adsorption synergistic photocatalytic properties by the high spe-cific surface area.

nano-TiO2 microspheressolvothermal methodhollow core-shell structurephotocatalysisgaseous benzene

杜晶晶、赵军伟、施飞、程晓民

展开 >

宁波工程学院机械工程学院,浙江宁波 315016

纳米TiO2微球 溶剂热法 中空核壳结构 光催化 气相苯

国家自然科学基金资助项目宁波"科技创新2025"重大科技专项项目宁波"科技创新2025"重大科技专项项目宁波"科技创新2025"重大科技专项项目

512752512022Z0472022Z0712023Z032

2024

功能材料
重庆材料研究院 中国仪器仪表学会仪表材料学会

功能材料

CSTPCD北大核心
影响因子:0.918
ISSN:1001-9731
年,卷(期):2024.55(7)