首页|等离子体电弧法制备硅锡复合纳米材料及电化学性能研究

等离子体电弧法制备硅锡复合纳米材料及电化学性能研究

扫码查看
硅作为锂离子电池的负极材料在脱出/嵌入锂时会产生巨大的体积膨胀,使自身发生粉化现象,从而造成容量的快速衰减.现有研究表明Si纳米化、合金化后能够缓解体积变形所导致的破碎效应.为了高效制备纳米级Si-Sn粉体材料,采用等离子体电弧作为热源对Si进行纳米化处理,之后通过等离子体电弧实现Si-Sn粉体材料的纳米合金化,研究等离子体电流对Si及Si-Sn纳米粉体材料制备特性的影响.利用X射线衍射(XRD)、扫描电子显微镜(SEM)检测制备的物相,通过电池测试系统和电化学工作站检测硅纳米线作为负极材料时的电化学特性.结果表明使用等离子体电弧能够实现硅纳米线的高效制备,添加低熔点的Sn有利于硅纳米线管径尺度的均匀化.两组硅纳米线在第三次充放电循环后的效率均可保持在90%左右,其中Sn的加入能进一步提高硅负极的导电性和稳定性,循环60次后,电池的比容量为117.5 mAh/g.
Preparation and electrochemical properties of silicon-tin composite nanomaterials by plasma arc method
As the negative electrode material of lithium-ion battery,silicon will produce huge volume expansion when it is removed/embedded in lithium,so that it will pulverize itself,resulting in rapid capacity decay.Exist-ing studies have shown that Si nanocrystallization and alloying can alleviate the crushing effect caused by volume deformation.In order to efficiently prepare nano-sized Si-Sn powder materials,plasma arc was used as a heat source to nano-size Si,and then nano-alloying of Si-Sn powder materials was realized by plasma arc.The effects of plasma current on the preparation characteristics of Si and Si-Sn nano-powder materials were studied.The prepared phase was detected by X-ray diffraction(XRD)and scanning electron microscopy(SEM).The electro-chemical properties of silicon nanowires as anode materials were detected by battery test system and electro-chemical workstation.The results show that the use of plasma arc can achieve efficient preparation of silicon nanowires,and the addition of low melting point Sn is beneficial to the homogenization of the diameter scale of silicon nanowires.The efficiency of the two groups of silicon nanowires can be maintained at about 90%after the third charge-discharge cycle.The addition of Sn can further improve the conductivity and stability of the sili-con anode.After 60 cycles,the specific capacity of the battery is 117.5 mAh/g.

arc dischargesilicontinnanomaterialelectrochemical performance

张勇、荆旭、葛泽龙、薛明虎、李树

展开 >

辽宁工程技术大学材料科学与工程学院,辽宁阜新 123000

江苏嘉明碳素新材料有限公司,江苏连云港 222300

电弧放电法 纳米材料 电化学性能

辽宁省教育厅基本科研项目

LI212410147012

2024

功能材料
重庆材料研究院 中国仪器仪表学会仪表材料学会

功能材料

CSTPCD北大核心
影响因子:0.918
ISSN:1001-9731
年,卷(期):2024.55(10)