首页|CoV-LDH@NiCo-LDH材料制备及赝电容储能性能研究

CoV-LDH@NiCo-LDH材料制备及赝电容储能性能研究

扫码查看
钴钒层状双金属氢氧化物(CoV-LDH)具有丰富的电化学活性位点,但仍然存在着低价钒源昂贵、制备困难、钒溶解等问题.研究采用电化学阴极还原法制备三维多孔状CoV-LDH电极材料,为提高CoV-LDH在碱性电解液中的稳定性,通过二次电沉积构建核壳结构CoV-LDH@NiCo-LDH复合材料,具有纳米球包覆纳米片微观形貌,且Ni、Co、V三元素分布均匀,增加了材料的活性位点与电解液的接触面积,降低了材料界面阻抗,赝电容储能性能有较大的提升.在1A/g电流密度下,CoV-LDH@NiCo-LDH比电容可达到995.8 F/g,远优于CoV-LDH的比电容(575.2 F/g),比电容显著提高了 73.1%,具有优异的倍率性能,在50 mV/s扫速下,赝电容占比85%.在经过2 000次循环后,循环稳定性可达85%.分析NiCo-LDH@CoV-LDH电极材料的反应动力学及能量储存机制,其不仅表现出电池型法拉第行为,而且表现出电容特性.将正极材料与活性炭(AC)负极组装形成CoV-LDH@NiCo-LDH//AC非对称超级电容器,在1 A/g的电流密度下,比电容可达222.2 F/g;功率密度为222.2 W/kg时的能量密度为30.86 Wh/kg,该工作为钒基双金属氢氧化物材料的制备与储能应用奠定基础.
Preparation of CoV-LDH@NiCo-LDH materials and energy storage performance of pseudocapacitors
Cobalt-vanadium layered bimetallic hydroxide(CoV-LDH)is rich in electrochemically active sites,but still suffers from the problems of expensive low-priced vanadium sources,difficult preparation,and vanadi-um dissolution.In this study,three-dimensional porous CoV-LDH electrode materials were prepared by electro-chemical cathodic reduction,and in order to improve the stability of CoV-LDH in alkaline electrolyte,the core-shell structure CoV-LDH@NiCo-LDH composites were constructed by secondary electrodeposition,which have the microscopic morphology of nanosphere-coated nanosheets and the uniform distribution of the three elements of Ni,Co,and V.This increased the contact area of the material's active sites and the electrolyte,and reduced the contact area of vanadium.With the uniform distribution of Ni,Co and V elements,the contact area between the active sites and the electrolyte is increased,the interfacial impedance of the material is reduced,and the pseudocapacitive energy storage performance is greatly improved.Under the current density of 1 A/g,the spe-cific capacitance of CoV-LDH@NiCo-LDH reaches 995.8 F/g,which is much better than that of CoV-LDH(575.2 F/g),with a significant increase of 73.1%in the specific capacitance,and it has excellent multiplicative performance,and the pseudocapacitance accounts for 85%of the total capacitance under the sweeping speed of 50 mV/s.The cycling stability reaches 85%after 2 000 cycles.Analyzing the reaction kinetics and energy stor-age mechanism of the NiCo-LDH@CoV-LDH electrode material,it exhibits not only the battery-type Faraday behavior but also the capacitive properties.The anode material was assembled with an activated carbon(AC)negative electrode to form a CoV-LDH@NiCo-LDH//AC asymmetric supercapacitor,with a specific capaci-tance of up to 222.2 F/g at a current density of 1 A/g,and an energy density of 30.86 Wh/kg at a power density of 222.2 W/kg.This work lays the foundation for the vanadium-based bimetallic hydroxide material,prepara-tion of vanadium-based bimetallic hydroxide materials and energy storage applications.

layered bimetallic hydroxideselectrochemical performancecathode materialssupercapacitorselec-trodeposition

邓渝、蒋佳余、陈云霞、赵晓琳、刘成林、杜天伦、陈金龙、单书馨、蒲洪、胡兵兵

展开 >

重庆交通大学材料科学与工程学院,重庆 400074

攀枝花学院四川省钒钛材料工程技术研究中心,四川攀枝花 617000

层状双金属氢氧化物 电化学性能 正极材料 超级电容器 电沉积

重庆市科技局博士直通车项目四川省钒钛材料工程技术研究中心科技计划资金项目重庆市教育委员会科学技术研究青年项目重庆交通大学科研经费项目重庆交通大学科研经费项目重庆交通大学研究生科研创新(创新基金)项目重庆交通大学大学生创新训练项目重庆市研究生导师团队建设项目

CSTB2022BSXM-JCX01312022FTGC07KJQN202300759202002008620200230322023S0089S202310618031JDDSTD2022006

2024

功能材料
重庆材料研究院 中国仪器仪表学会仪表材料学会

功能材料

CSTPCD北大核心
影响因子:0.918
ISSN:1001-9731
年,卷(期):2024.55(10)