首页|纳米多孔NiO-Ni/Al3Ni2复合催化剂的制备及析氢性能研究

纳米多孔NiO-Ni/Al3Ni2复合催化剂的制备及析氢性能研究

扫码查看
利用电解水技术制取氢气是一种清洁环保的氢气生产方法,而要实现电解水制氢的工业化应用,关键在于开发高效、稳定且成本低廉的析氢反应催化剂.采用脱合金法和电化学氧化处理相结合的方法,制备出了一种纳米多孔NiO-Ni/Al3Ni2复合催化剂.由于Ni、Al3Ni2和NiO三相的协同作用,NiO-Ni/Al3Ni2复合催化剂表现出了良好的电催化水分解析氢活性.通过调整电化学氧化处理的工艺,能够获得具有不同组分比例的复合催化剂,其中,NiO-Ni/Al3Ni2-10s催化剂具有最佳的析氢反应催化性能,在碱性介质中,仅需79.1 mV的过电位就可达到10 mA/cm2的电流密度,同时该催化剂还展现出了卓越的长期稳定性.这一研究成果将为开发高活性、高稳定性的镍基析氢催化剂提供有价值的启示和借鉴.
Synthesis and hydrogen evolution performance of nanoporous NiO-Ni/Al3Ni2 composite catalysts
Producing hydrogen through water electrolysis technology is a clean and environmentally friendly method of hydrogen generation.However,the key to realizing the industrial-scale application of water electroly-sis for hydrogen production lies in the development of efficient,stable and cost-effective catalysts for the hydro-gen evolution reaction.In this work,a nanoporous NiO-Ni/Al3Ni2 composite catalyst was prepared by combi-ning the dealloying method and electrochemical oxidation treatment.Due to the synergistic effects of the Ni,Al3Ni2 and NiO tri-phases,the NiO-Ni/Al3Ni2 composite catalyst exhibited excellent electrocatalytic activity for water splitting and hydrogen evolution.By adjusting the parameters of the electrochemical oxidation treat-ment,composite catalysts with different compositional ratios could be obtained.Among them,the NiO-Ni/Al3Ni2-10s catalyst showed the optimal hydrogen evolution reaction catalytic performance,requiring only 79.1 mV of overpotential to achieve a current density of 10 mA/cm2 in alkaline media,while also demonstrating excellent long-term stability.This research provides valuable insights and references for the development of high-activity and high-stability nickel-based hydrogen evolution catalysts.

hydrogen evolution reactionnanoporouselectrooxidationdealloying

顾先涛、樊培培、陈晓春、张俊杰、计巧珍、周仲康、董浩声、彭立雪、朱胜利

展开 >

国网安徽省电力有限公司电力科学研究院,合肥 230601

国网安徽省电力有限公司超高压分公司,合肥 230000

安徽新力电业科技咨询有限责任公司,合肥 230601

天津大学材料科学与工程学院,天津 300350

展开 >

析氢反应 纳米多孔 电氧化 脱合金

2024

功能材料
重庆材料研究院 中国仪器仪表学会仪表材料学会

功能材料

CSTPCD北大核心
影响因子:0.918
ISSN:1001-9731
年,卷(期):2024.55(12)