首页|基于复合超材料的多种结构的太赫兹频率开关

基于复合超材料的多种结构的太赫兹频率开关

扫码查看
超材料可以应用于调制器,能够吸收特定频率的太赫兹波.然而当超材料的结构参数一旦确定,就只能在特定的共振频率产生完美吸收.设计了三种复合超材料结构探究复合超材料的共振,这三种结构的超材料均以石英为衬底,在该基底上加工一层具有开口的金属谐振环.三种结构分别是单开口的金属谐振圆环,单开口的金属谐振方框和不对称双开口的金属谐振方框.在三种结构的开口中填入光敏材料氧化铟,改变氧化铟的电导率对这些复合超材料结构的太赫兹的调制特性进行了研究,同时对三种结构太赫兹频率开关的不同共振频率的电场分布进行了数值模拟.对于单开口不同形状的金属谐振环,共振频率不同,但都随着氧化铟电导率的增加,共振峰的吸收强度逐渐减小,从对应的电场分布图中可以看到,随着氧化铟电导率的增加,间隙边缘处的场强越来越弱,谐振峰吸收强度也就越来越弱,这个过程可以被认为是太赫兹波在共振频率的动态开关.对于不对称双开口的金属谐振方框,在偏离金属框中央处的开口填入氧化铟,这个结构可以看到两个谐振峰,随着电导率的增加,一个谐振峰吸收强度逐渐减弱,而另一个谐振峰吸收强度无明显变化,由此可得吸收强度随电导率增加而减弱的谐振峰为法诺共振,而另一个吸收强度一直无明显变化的谐振峰为偶极共振.从对应场分布图可以看到,法诺共振入射的太赫兹波的能量主要集中在金属谐振环的右侧金属臂上,而且随着电导率的增大,右侧金属臂的间隙处积累的电荷越来越多;而偶极共振入射的太赫兹波的能量主要集中在金属谐振环的左侧金属臂上,电导率增加,偶极共振的电场分布无明显变化.
Photo-Excited Frequency Terahertz Switch Based on Various Composite Metamaterial Structures
Terahertz(THz)electromagnetic radiation lies between the microwave and far-infrared regions and has attracted much attention due to its wide application.However,due to the lack of terahertz functional devices,it can not fully meet the need of practical applications,so the modular and other terahertz functional devices needs to make a breakthrough.This paper mainly studies the terahertz wave modulator using the transmission terahertz spectral system.Metamaterial can be applied to the absorber.However,when the structural parameters of the metamaterial are once determined,the perfect absorption can only be generated at a specific resonance frequency.We designed three composite metamaterials structures to explore the resonance of composite metamaterials;three structures are a single gap of a metal resonance ring,a single gap of a metal resonance box and asymmetric double gaps of a metal resonance box;in the gap of three structures with photosensitive material indium oxide.We change the conductivity of indium oxide,explore terahertz modulation properties of these composite metamaterial structures and do numerical simulations of the electric field distribution of different resonance frequencies for three structured THz frequency switches.For a single gap of different shapes of the metal resonant rings,the resonance frequency is different,but with the increasing of indium oxide's conductivity,resonance peak absorption intensity gradually decreases.From the corresponding electric-field distribution diagram,with the increasing of indium oxide's conductivity,the gap edge electric field strength is increasingly weak,so the resonance peak absorption strength is more and more weak.This process can be considered a terahertz wave in the resonance frequency dynamic switch.For asymmetric double gaps metal resonance box,we deviate from the gap in the middle to fill the indium oxide;the structure's frequency spectrogram shows two resonance peaks.With the increase of conductivity,a resonance peak absorption strength gradually weakens and the other resonance peak absorption strength doesn't change significantly.Thus,the resonance peak whose absorption strength weakens with the increase conductivity is Fano resonance,and the other resonance peak whose absorption strength does not change significantly is dipole resonance.As can be seen from the corresponding electric-field distribution diagram,the energy of the incoming THz wave of the Fano resonance is mainly concentrated on the right metal arm of the metal resonance box,and as the conductivity increases,the quantity of charges accumulated at the gap of the right metal arm is increasing.In contrast,the energy of the dipole resonance incoming THz wave is mainly concentrated on the left metal arm of the metal resonance box and as the conductivity increasing,the electric-field distribution of the dipole resonance does not change significantly.

TerahertzFrequency switchMetamaterial

陈姗姗、张波

展开 >

太赫兹光电子学教育部重点实验室,首都师范大学物理系,北京 100048

太赫兹 频率开关 超材料

国家自然科学基金项目国家自然科学基金项目

6217516861505125

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(2)
  • 16