首页|基于MEMS-FPI片上光谱芯片的多组分痕量气体检测系统

基于MEMS-FPI片上光谱芯片的多组分痕量气体检测系统

扫码查看
气体的特征吸收频率可以通过红外光谱技术进行提取,但以可调谐激光吸收光谱法(TDLAS)为标志的气体光谱检测技术难以兼顾宽波段与高精度.因此,高集成度、高速度和高稳定性的多组分痕量气体的检测技术一直是科研界研究的热点.为了拓宽红外激光器检测的范围,本项目研发了中心波长分别为1 543、1 579、1 626、1 653、1 690与1 742 nm波段可调谐的多通道、可调频分布式反馈(DFB)激光器作为光源.利用MEMS-FPI片上光谱芯片探测带宽窄(约5 nm)、工作波长可精准调控、滤波效率高等一系列优势,实现了与多波长红外激光器的同步探测,完成多种混合气体的稳定高精度的识别与浓度检测,有效抑制了背景气体的相互干扰.该系统采用可寻址的MEMS-FPI光谱芯片的多通道波长调制(WMS)技术,通过单路锁相放大电路分别对不同气体吸收谱线的二次谐波(2f)信号进行解调与数字采集.实现了甲烷(CH4),硫化氢(H2S),乙烯(C2H4)等七种气体标志物的快速痕量级检测.能够兼顾多组分识别与低气体检测下限(识别速度2 s以内),检测下限相比于传统宽光谱直接测量方法降低了约700倍.实验结果表明,本系统对甲烷的检测下限可达到0.2 μL·L-1,且二氧化碳的检测下限为10 μL·L-1,丙酮的检测下限为2 μL·L-1,乙烯、硫化氢的检测下限为1μL·L-1,氨气的检测下限为5 μL·L-1,氯化氢的检测下限为4 μL·L-1,完全满足包括双碳背景下的低浓度温室气体监测、医疗领域人体呼出气体检测与诊断在内的一系列痕量级多组分气体检测的应用需求.
Multicomponent Trace Gas Detecting and Identifying System Based on MEMS-FPI on-Chip Spectral Device
Infrared spectroscopy technology can be carried out to extract the characteristic absorption frequency of gas.However,the present gas spectrum detection technology,such as tunable laser absorption spectroscopy(TDLAS),makes it difficult to balance the wide band absorption and high precision.Therefore,developing multicomponent trace gas detection technology with high integration,speed and stability has always been a researching hotspot in scientific research.In order to broaden the range of infrared laser detection,this project developed a multi-channel distributed feedback(DFB)laser with tunable central wavelengths of 1 543,1 579,1 626,1 653,1 690 and 1 742 nm as the light source.It realized the synchronous detection with a multi-wavelength infrared laser,identification of multicomponent trace gas,a high efficient filtering of background gases by making use of the MEMS-FPI on-chip device's advantages,such as narrow detecting band width(5 nm),adjustable and addressable working wavelength and efficient filtering capability.This system innovatively adopts the multi-channel wavelength modulation(WMS)technology of an addressable MEMS-FPI spectrum chip and realizes the digital acquisition of the second harmonic(2f)signal through a single phase-locked amplifier loop.The fast trace level detection of seventrace gases(methane CH4,hydrogen sulfide H2S,ethylene C2 H4)has been realized(less than 2 s),which also curtailed the lower limit of multi-component identification.Compared with the direct measuring method by the traditional wide-spectrum absorption,the lower limit of detection has been declined by about 700 times.The experimental results show that the lower limit of methane detection can reach 0.2 μL·L-1,and the lower limit of other gases except carbon dioxide is 10 μL·L-1,while the lower limit of other gases is 1~5 μL·L-1.It fully meets the application requirements of a series of trace multi-component gas detection applications,including double carbon monitoring of greenhouse gases,exhaled gas detection and diagnosis of exhaled breath.

Multi-component gas detectionTDLASNear infrared spectroscopyMEMS-FPI spectrum chip

刘兆海、安昕辰、陶治、刘向

展开 >

南京信息工程大学电子与信息工程学院,江苏南京 210044

中科芯集成电路股份有限公司,江苏无锡 214000

苏州捷准智能科技研发有限公司,江苏苏州 215128

多组分痕量气体检测 TDLAS 近红外光谱 MEMS-FPI光谱芯片

国家自然科学基金项目

61905116

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(2)
  • 15