首页|番茄苗期叶位色素含量高光谱检测及可视化研究

番茄苗期叶位色素含量高光谱检测及可视化研究

扫码查看
叶片色素含量是表征作物栽培基质营养元素和生理状态的重要指标;快速、精准获取色素含量及叶位分布规律是设施农业水肥精准化管理的基础.以番茄苗期不同叶位叶绿素a(Chla)、叶绿素b(Chlb)、叶绿素(Chll)和类胡萝卜素(Caro)为研究指标,用营养液配制10个氮素浓度;根据叶片位置摘取1 710片(285个样本)用于可见光-近红外高光谱采集;运用卷积平滑(S-G)、标准正态变量变换(SNV)和多元散射校正(MSC)对光谱数据预处理.首先采用竞争自适应加权算法(CARS)对特征波段"粗"提取,然后利用迭代和保留信息变量算法(IRIV)判断"粗"提取波段的重要性,并对强弱波段组逆向消除"精"提取最优波段集合,建立偏最小二乘回归(PLSR)模型.结果表明:(1)营养液氮素浓度为302.84 mg·L-1,叶片色素含量最大,且高浓度的抑制作用高于低浓度,叶位色素含量呈上叶位>中叶位>低叶位分布规律;(2)采用CARS-IRIV-PLSR算法"粗-精"特征波段筛选策略分别对Chla、Chlb、Chll和Caro提取了 4、4、10和11条特征波段,其Rp为0.772 2、0.732 1、0.847 1和0.858 7;(3)结合最优模型色素定量反演图像可视化表达,Chla、Chlb和Chll分布规律一致,而Caro与Chll分布规律相反,该结论与植物生理特征和测定结果相吻合.采用高光谱成像技术能够实现对叶片色素含量进行无损检测及可视化表达,为设施农业植物叶片色素分布、养分亏缺和施肥决策等提供数据支撑和理论依据.
Hyperspectral Detection and Visualization of Pigment Content in Different Positions of Tomato Leaf at Seadling Stage
The leaf pigment content is an important indicator to characterize crop cultivation substrate's nutrient elements and physiological state.Rapid and accurate acquisition of pigment content and leaf position distribution is the basis for precise water and fertilizer management in facility agriculture.Chlorophyll a(Chla),Chlorophyll b(Chlb),Chlorophyll(Chll)and Carotenoid(Caro)at different leaf positions of the tomato seedling stage were used as research indicators.Ten nitrogen concentrations were prepared for the nutrient solution.We picked 1710 slices(285 samples)for VIS-NIR hyperspectral acquisition according to the leaf position.The data were preprocessed by Savitzky-Golay(S-G),standard normal variate(SNV),and multiple scattering correction(MSC).Firstly,the key bands were"roughly"extracted with the competitive adaptive reweighted sampling(CARS)algorithm.Then,the iteratively retains informative variables(IRIV)algorithm to judge the importance of key bands,and"accurately"extract the optimal set of bands by reverse eliminating strong and weak bands.The partial least squares regression(PLSR)models were established.The results showed that:(1)When the nutrient liquid nitrogen concentration was 302.84 mg·L-1,the leaf pigment content was the largest.Moreover,the inhibitory effect of high concentration is higher than that of low concentration.The pigment content in the leaf position showed the distribution law of upper>middle>low.(2)The CARS-IRIV-PLSR algorithm,"roughly-accurately"key band screening strategy was used to extract 4,4,10 and 11 key bands for Chla,Chlb,Chll and Caro,and the Rp was 0.772 2,0.732 1,0.847 1 and 0.858 7,respectively.(3)Combined with the optimal model pigment quantitative inversion image visual expression,the distribution rules of Chla,Chlb and Chll are consistent,while the distribution rules of Caro and Chll are opposite.This conclusion is consistent with the plant's physiological characteristics and measurement results.The hyperspectral imaging technology can realize the nondestructive detection and visual expression of leaf pigment content.It provides data support and a theoretical basis for plant leaf pigment distribution,nutrient deficiency and fertilization decision-making in facility agriculture.

HyperspectralLeaf positionPigment contentKey bandVisualization

赵建贵、王国梁、张宇、赵丽洁、陈宁、王文俊、杜慧玲、李志伟

展开 >

山西农业大学农业工程学院,山西太谷 030801

山西农业大学谷子研究所,山西 长治 046000

山西农业大学基础部,山西太谷 030801

高光谱 叶位 色素含量 特征波段 可视化

国家重点研发计划项目国家重点研发计划项目山西省重点研发计划项目山西省现代农业产业技术体系建设专项资金项目资助

2017YFD07015012021YFD1600301-4201903D211005

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(2)
  • 17