首页|基于多标记深度森林算法的冷鲜羊肉新鲜度无损检测方法

基于多标记深度森林算法的冷鲜羊肉新鲜度无损检测方法

A Nondestructive Method for Freshness Detection of Chilled Mutton With Multiple Indicators and Improved Deep Forest Algorithm

扫码查看
羊肉新鲜程度受多种因素影响,其检测一般要从感官性状、分解的理化产物和微生物繁殖程度等方面进行.然而基于单一指标的羊肉新鲜度检测局限性大,适用性低,很难综合评价羊肉新鲜程度,而且传统检测方法操作复杂,效率低,不能满足日常实际需求.高光谱成像技术作为一种快速、无损、高效的检测技术,可以有效地获取冷鲜羊肉腐败过程中表面、内部组成和理化变化信息.提出一种基于改进深度森林算法的冷鲜羊肉新鲜度评价模型,增加特征筛选挖掘与多个评价指标相关的光谱信息,同时增加层增长控制有效防止模型过拟合.采集了 0~14天4 ℃贮藏环境中羊肉样本的400~1 000 nm高光谱数据,采用实验室方法测定了样本的挥发性盐基氮(TVB-N)、pH值、菌落总数(TAC)和大肠菌群近似数(ANC)指标值.选择感兴趣区域提取光谱数据,通过S-G平滑滤波法和多元散射校正法对原始光谱数据进行预处理,利用连续投影法提取了 18个特征波段.将数据集按照3:1划分为训练集和测试集;利用本文提出的改进深度森林算法建立新鲜度等级分类模型.结果表明,新鲜度等级分类总体精度为0.985 7,并利用hamming loss、one-error、ranking loss和marco-AUC四种多标记度量指标评价模型性能,分别为0.025 7、0.014 3、0.014 2和0.998 6,均优于传统多标记分类算法也表明,该多指标新鲜度评价模型可用于羊肉新鲜度的快速无损检测,改善了单一新鲜度检测指标模型分类的局限性,为后续高光谱成像技术的多指标无损检测提供了方法.
Mutton freshness is affected by many factors,and the detection is generally carried out based on sensory properties,physical and chemical products of decomposition,microbial reproduction and other aspects.However,the freshness detection of mutton based on a single indicator has great limitations and low applicability,and it is not easy to evaluate the mutton freshness comprehensively.Moreover,the traditional detection methods are complex and inefficient,which cannot meet the daily actual needs.As a fast,nondestructive and efficient intelligent detection technology,hyperspectral imaging technology can effectively collect the surface,internal composition and physical and chemical changes in the process of mutton putrefaction.This paper proposes an evaluation model for the freshness of chilled mutton based on the improved deep forest algorithm,which adds feature screening to mine the spectral information related to multiple evaluation indicators.It adds layer growth control to prevent the model from over fitting effectively.This paper collects 400~1 000 nm hyperspectral data of mutton samples stored at 4 ℃ for 0~14 days.Total volatile base nitrogen(TVB-N),pH,total aerobic plate count(TAC)and the approximate number of coliforms(ANC)indicator values are measured by laboratory methods.The representative spectra of mutton samples are extracted in the regions of interest.The original spectral data is preprocessed using the smoothing filtering and multivariate scattering correction methods.18 spectral feature bands are extracted by using the continuous projection method,and the samples of the training set and the testing set are divided at a ratio of 3:1.Establishment of the freshness classification model is used in the improved deep forest algorithm proposed in this paper.The results show that the overall accuracy of freshness classification is 0.985 7,and use Hamming loss,One-error,Ranking loss and Marco-AUC multi-label metrics to evaluate the performance of the model,which are 0.025 7,0.014 3,0.014 2 and 0.998 6 respectively.Theyare better than the traditional multi-label classification algorithm.The research shows that the multi-indicator freshness classification model can be used for rapid,nondestructive testing of mutton freshness.It improves the limitations of single-indicator model classification and provides a research method for multi-indicator nondestructive testing of subsequent hyperspectral imaging technology.

HyperspectraltechnologyChilledmuttonFreshnessMulti label classificationDeep forest

徐子洋、姜新华、白洁、张文婧、李靖

展开 >

内蒙古农业大学计算与信息工程学院,内蒙古呼和浩特 010018

内蒙古自治区农牧业大数据研究与应用重点实验室,内蒙古呼和浩特 010018

高光谱 冷鲜羊肉 新鲜度 多标记分类 深度森林

国家自然科学基金项目内蒙古自治区科技攻关项目内蒙古自治区科技重大专项项目

319604942020GG01692021ZD0003

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(2)
  • 28