首页|滩羊肉TEAC含量的高光谱快速检测技术

滩羊肉TEAC含量的高光谱快速检测技术

扫码查看
生育酚当量抗氧化能力(TEAC)是评估肌肉内源抗氧化程度的指标之一,可用于评估亲水化合物的抗氧化活性及清除自由基的能力.为探究快速检测滩羊肉中TEAC的可行性,采用可见近红外(Vis/NIR)高光谱成像技术,建立基于光谱信息融合图像纹理特征(TFS)的TEAC定量预测模型.将不同部位样本集根据3:1的比例随机划分成校正集和预测集,在400~1 000 nm范围内采集反射光谱图像,提取每个样本图像的感兴趣区域(ROI)以获取原始光谱数据;采用中值滤波(MF)、基线校准(Baseline)、卷积平滑(S-G)和多元散射校正(MSC)四种算法对原始光谱中散射及干扰信息进行校正,并建立偏最小二乘回归(PLSR)模型,将光谱数据与TEAC值进行关联.采用间隔随机蛙跳(IRF)、变量组合集群分析(VCPA)、竞争性自适应加权抽样(CARS)和迭代变量子集优化(IVSO)算法提取TEAC浓度的特征波长.采用灰度共生矩阵(GLCM)算法对肉样的主要TFS依次进行提取.基于特征光谱及图谱融合信息建立反向传播人工神经网络(BP-ANN)和最小二乘支持向量机(LSSVM)模型,对滩羊肉中TEAC含量预测并进行对比分析.结果表明,(1)最优预处理为Baseline建立的PLSR模型,其Rc为0.912 1,RMSEC为0.963 5,Rp为0.868 3,RM-SEP为1.277 0;(2)采用IRF、VCPA、CARS和IVSO分别提取出了 71、9、22和39个特征波长,占全光谱的56.8%、7.2%、17.6%和31.2%;(3)基于多元特征提取算法建立的BP-ANN和LSSVM模型,对TEAC含量进行预测时 Baseline-IVSO-LSSVM(Rc=0.913 2,RMSEC=0.962 0,Rp=0.864 6,RMSEP=1.288 3)具有最优预测性能;(4)相比于单一的光谱信息模型,TEAC相关的TFS图谱融合模型IVSO-TF1-BP-ANN显示出更好的效果,其Rp为0.8916,较特征波长数据建模提高了 0.028 6.
Rapid Detection of Tocopherol Equivalent Antioxidant Capacity in Tan Mutton Based on the Fusion of Hyperspectral Imaging and Spectral Information
Trolox-Equivalent Antioxidant Capacity(TEAC)is one of the endogenous antioxidant indexes of muscle,which can be used to determine the antioxidant activity of hydrophilic compounds and free radical scavenging ability.The visible near/infrared(Vis/NIR)hyperspectral imaging technology was used to explore the feasibility of rapid detection of the TEAC in Tan mutton,a quantitative prediction model for TEAC based on spectral information fusion of image texture features(TFS)was built.The samples from different parts were randomly split into calibration set and prediction set according to the ratio of 3:1.The spectral reflectance images were collected in the range of 400~1 000 nm,and the regions of interest(ROI)were selected to obtain raw spectral data.Four algorithms,including Median Filtering(MF),Baseline,Savitzky-Golay(S-G)and multiplicative scatter correction(MSC),were used to correct the scattering and interference information in the original spectrum,and the Partial Least Squares Regression(PLSR)model was established to correlate spectral data with TEAC values.Representative characteristic spectra of TEAC concentrations were extracted using Interval random frog(IRF),Variable combination population analysis(VCPA),Competitive adaptive reweighted sampling(CARS),and Iteratively variable subset optimization(IVSO)algorithms.The meat's main texture features were extracted sequentially by using the Gray level co-occurrence matrix(GLCM)algorithm.Based on the characteristic spectrum and spectral fusion information,the Back-propagation artificial neural network(BP-ANN)and Least-squares support vector machines(LSSVM)model were established to predict and compare the TEAC content in Tan mutton.The results showed that(1)The PLSR model established by the preprocessed spectra of Baseline was the best with Rc of 0.912 1,RMSEC of 0.963 5,Rp of 0.868 3,RMSEP of 1.277 0;(2)The 71,9,22 and 39 characteristic bands based on the original spectral were extracted by IRF,VCPA,CARS and IVSO methods,respectively,accounting for 56.8%,7.2%,17.6%and 31.2%of the total bands;(3)Compared with model effects of BP-ANN and LSSVM models in feature variables extraction based on multiple algorithms,the optimal prediction model for TEAC content was Baseline-IVSO-LSSVM(Rc=0.913 2,RMSEC=0.962 0,Rp=0.864 6,RMSEP=1.288 3);(4)The fusion model IVSO-TF1-BP-ANN showed better results(Rp=0.891 6)with improving by 0.028 6,compared with model based on the characteristic wavelength.

MuttonHyperspectral imagingTocopherol equivalent antioxidant capacityFusion of spectra and texture feature

袁江涛、郭佳俊、孙有瑞、刘贵珊、李月、吴迪、景怡萱

展开 >

宁夏大学食品科学与工程学院,宁夏银川 750021

宁夏大学物理与电子电气工程学院,宁夏银川 750021

滩羊肉 高光谱成像 生育酚当量抗氧化能力 图谱融合

宁夏自然科学基金项目宁夏回族自治区领军人才培养项目银川市科技创新项目2020年度宁夏留学人员创新创业项目国家自然科学基金项目

2022AAC030192020GKLRLX052022ZDNY0531760435

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(2)
  • 20