首页|改进遗传算法嵌入经典分类算法实现润滑油添加剂微小量多种类同步识别

改进遗传算法嵌入经典分类算法实现润滑油添加剂微小量多种类同步识别

扫码查看
在润滑油中加入微少量添加剂就能使润滑油获得某种新的特性或改善润滑油中已有的某些特性的性质.针对机械设备润滑油中微小量添加剂多种类识别问题,基于python语言进行模型建立,采用基础油PAO-10和三种商用润滑油添加剂T321、T534、T307按照不同比例配制了 8种不同样本.采用Thermo Sci-entific Nicolet iS5型傅里叶变换红外光谱仪采集了样本4 000~400 cm-1范围附近的中红外光谱信息,并对样本中红外光谱数据采用Min-Max归一化进行预处理.使用两种经典分类算法,包括一对多支持向量机(OVRSVMs)、随机森林(RF),嵌入遗传算法(GA)实现中红外光谱特征波段筛选.为避免GA收敛过快和易陷入局部最优解,对GA的选择算子进行了改进,形成基于局部搜索算子的遗传算法(LGA),从而建立多类别分类模型的构建方法.结果显示:嵌入GA筛选波段后的新模型的种类识别准确率从利用经典分类算法对原始波长数据的 OVR SVMs(83.33%)、RF(87.50%)提升至 OVR SVMs+GA(100%)、RF+GA(100%);而嵌入LGA的新模型在保持原模型高准确率的情况下,RF+LGA筛选得到的特征区间长度为原光谱数据长度的36.7%,并且与添加剂物质的红外吸收峰有很好的对应情况.新模型不仅适用于只含单一添加剂的情况,对含有两种及两种以上添加剂的同步识别仍然具有近100%的较高识别率.表明所构建模型可以有效实现微小量润滑油添加剂的快速、准确、多种类同步识别.
The Improved Genetic Algorithm is Embedded Into the Classical Classification Algorithm to Realize the Synchronous Identification of Small Quantity and Multi Types of Lubricating Oil Additives
Adding a small amount of additives to the lubricating oil can make the lubricating oil obtain some new characteristics or improve the properties of some existing characteristics in the lubricating oil.Aiming at the problem of identifying various kinds of tiny additives in lubricating oil of mechanical equipment.Based on Python,eight different samples were prepared with Base Oil PAO-10 and three Commercial lubricating oil additives,T321,T534,and T307,in different proportions.Thermo Scientific Nicolet IS5 Fourier collected the mid-infrared spectra of the samples transform infrared spectrometer in the range of 4 000~400 cm 1,and the infrared spectra of the samples were normalized by Min-Max.For nearly category mechanical equipment of tiny amount of additive in lubricating oil variety identification,four classical classification algorithms are studied,including the Support Vector Classifier(OVR SVMs),Random Forests Classifier(RF),embedded in the Genetic Algorithm(GA),and Local search Genetic Algorithm(LGA)optimization technologies,infrared spectrum characteristic band many category classification model building methods are established.Example test results show that the accuracy of the new model improves the original classical algorithm's OVR SVMs(91.67%)and RF(79.17%)to OVR SVMs(100%)and RF(100%).With the new models embedded in LGA,the length of the characteristic band was shortened to 36.7%of the length of the original band.The new model applies to the case with only one additive and has a high recognition rate of 100%for the simultaneous identification of two or more additives.The results show that the model can effectively realize the rapid,accurate,and multi-type synchronous recognition of small amounts of lubricanting oil additives.

Lubricant additiveMid-infrared spectroscopyClassical classification algorithmGA optimization technologyCharacteristic band screening

夏延秋、谢培元、NAY MIN AUNG、张涛、冯欣

展开 >

华北电力大学能源动力与机械工程学院,北京 102206

中国科学院兰州化学物理研究所固体润滑国家重点实验室,甘肃兰州 730000

润滑油添加剂 中红外光谱 经典分类算法 改进遗传算法 特征波段筛选

国家重点研究与发展计划项目固体润滑国家重点实验室开放课题

2018YFB0703802LSL-1814

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(3)
  • 19